Metamath Proof Explorer


Theorem efexple

Description: Convert a bound on a power to a bound on the exponent. (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion efexple A 1 < A N B + A N B N log B log A

Proof

Step Hyp Ref Expression
1 simpl A 1 < A A
2 0lt1 0 < 1
3 0re 0
4 1re 1
5 lttr 0 1 A 0 < 1 1 < A 0 < A
6 3 4 5 mp3an12 A 0 < 1 1 < A 0 < A
7 2 6 mpani A 1 < A 0 < A
8 7 imp A 1 < A 0 < A
9 1 8 elrpd A 1 < A A +
10 9 3ad2ant1 A 1 < A N B + A +
11 simp2 A 1 < A N B + N
12 reexplog A + N A N = e N log A
13 10 11 12 syl2anc A 1 < A N B + A N = e N log A
14 reeflog B + e log B = B
15 14 3ad2ant3 A 1 < A N B + e log B = B
16 15 eqcomd A 1 < A N B + B = e log B
17 13 16 breq12d A 1 < A N B + A N B e N log A e log B
18 zre N N
19 18 3ad2ant2 A 1 < A N B + N
20 rplogcl A 1 < A log A +
21 20 3ad2ant1 A 1 < A N B + log A +
22 21 rpred A 1 < A N B + log A
23 19 22 remulcld A 1 < A N B + N log A
24 relogcl B + log B
25 24 3ad2ant3 A 1 < A N B + log B
26 efle N log A log B N log A log B e N log A e log B
27 23 25 26 syl2anc A 1 < A N B + N log A log B e N log A e log B
28 19 25 21 lemuldivd A 1 < A N B + N log A log B N log B log A
29 25 21 rerpdivcld A 1 < A N B + log B log A
30 flge log B log A N N log B log A N log B log A
31 29 11 30 syl2anc A 1 < A N B + N log B log A N log B log A
32 28 31 bitrd A 1 < A N B + N log A log B N log B log A
33 17 27 32 3bitr2d A 1 < A N B + A N B N log B log A