Metamath Proof Explorer


Theorem eff

Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007) (Proof shortened by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion eff exp :

Proof

Step Hyp Ref Expression
1 df-ef exp = x k 0 x k k !
2 nn0uz 0 = 0
3 0zd x 0
4 eqid n 0 x n n ! = n 0 x n n !
5 4 eftval k 0 n 0 x n n ! k = x k k !
6 5 adantl x k 0 n 0 x n n ! k = x k k !
7 eftcl x k 0 x k k !
8 4 efcllem x seq 0 + n 0 x n n ! dom
9 2 3 6 7 8 isumcl x k 0 x k k !
10 1 9 fmpti exp :