Metamath Proof Explorer


Theorem eff2

Description: The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008)

Ref Expression
Assertion eff2 exp : 0

Proof

Step Hyp Ref Expression
1 eff exp :
2 ffn exp : exp Fn
3 1 2 ax-mp exp Fn
4 efcl x e x
5 efne0 x e x 0
6 eldifsn e x 0 e x e x 0
7 4 5 6 sylanbrc x e x 0
8 7 rgen x e x 0
9 ffnfv exp : 0 exp Fn x e x 0
10 3 8 9 mpbir2an exp : 0