Step |
Hyp |
Ref |
Expression |
1 |
|
effsumlt.1 |
|
2 |
|
effsumlt.2 |
|
3 |
|
effsumlt.3 |
|
4 |
|
nn0uz |
|
5 |
|
0zd |
|
6 |
1
|
eftval |
|
7 |
6
|
adantl |
|
8 |
2
|
rpred |
|
9 |
|
reeftcl |
|
10 |
8 9
|
sylan |
|
11 |
7 10
|
eqeltrd |
|
12 |
4 5 11
|
serfre |
|
13 |
12 3
|
ffvelrnd |
|
14 |
|
eqid |
|
15 |
|
peano2nn0 |
|
16 |
3 15
|
syl |
|
17 |
|
eqidd |
|
18 |
|
nn0z |
|
19 |
|
rpexpcl |
|
20 |
2 18 19
|
syl2an |
|
21 |
|
faccl |
|
22 |
21
|
adantl |
|
23 |
22
|
nnrpd |
|
24 |
20 23
|
rpdivcld |
|
25 |
7 24
|
eqeltrd |
|
26 |
8
|
recnd |
|
27 |
1
|
efcllem |
|
28 |
26 27
|
syl |
|
29 |
4 14 16 17 25 28
|
isumrpcl |
|
30 |
13 29
|
ltaddrpd |
|
31 |
1
|
efval2 |
|
32 |
26 31
|
syl |
|
33 |
11
|
recnd |
|
34 |
4 14 16 17 33 28
|
isumsplit |
|
35 |
3
|
nn0cnd |
|
36 |
|
ax-1cn |
|
37 |
|
pncan |
|
38 |
35 36 37
|
sylancl |
|
39 |
38
|
oveq2d |
|
40 |
39
|
sumeq1d |
|
41 |
|
eqidd |
|
42 |
3 4
|
eleqtrdi |
|
43 |
|
elfznn0 |
|
44 |
43 33
|
sylan2 |
|
45 |
41 42 44
|
fsumser |
|
46 |
40 45
|
eqtrd |
|
47 |
46
|
oveq1d |
|
48 |
32 34 47
|
3eqtrd |
|
49 |
30 48
|
breqtrrd |
|