| Step |
Hyp |
Ref |
Expression |
| 1 |
|
effsumlt.1 |
|
| 2 |
|
effsumlt.2 |
|
| 3 |
|
effsumlt.3 |
|
| 4 |
|
nn0uz |
|
| 5 |
|
0zd |
|
| 6 |
1
|
eftval |
|
| 7 |
6
|
adantl |
|
| 8 |
2
|
rpred |
|
| 9 |
|
reeftcl |
|
| 10 |
8 9
|
sylan |
|
| 11 |
7 10
|
eqeltrd |
|
| 12 |
4 5 11
|
serfre |
|
| 13 |
12 3
|
ffvelcdmd |
|
| 14 |
|
eqid |
|
| 15 |
|
peano2nn0 |
|
| 16 |
3 15
|
syl |
|
| 17 |
|
eqidd |
|
| 18 |
|
nn0z |
|
| 19 |
|
rpexpcl |
|
| 20 |
2 18 19
|
syl2an |
|
| 21 |
|
faccl |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
nnrpd |
|
| 24 |
20 23
|
rpdivcld |
|
| 25 |
7 24
|
eqeltrd |
|
| 26 |
8
|
recnd |
|
| 27 |
1
|
efcllem |
|
| 28 |
26 27
|
syl |
|
| 29 |
4 14 16 17 25 28
|
isumrpcl |
|
| 30 |
13 29
|
ltaddrpd |
|
| 31 |
1
|
efval2 |
|
| 32 |
26 31
|
syl |
|
| 33 |
11
|
recnd |
|
| 34 |
4 14 16 17 33 28
|
isumsplit |
|
| 35 |
3
|
nn0cnd |
|
| 36 |
|
ax-1cn |
|
| 37 |
|
pncan |
|
| 38 |
35 36 37
|
sylancl |
|
| 39 |
38
|
oveq2d |
|
| 40 |
39
|
sumeq1d |
|
| 41 |
|
eqidd |
|
| 42 |
3 4
|
eleqtrdi |
|
| 43 |
|
elfznn0 |
|
| 44 |
43 33
|
sylan2 |
|
| 45 |
41 42 44
|
fsumser |
|
| 46 |
40 45
|
eqtrd |
|
| 47 |
46
|
oveq1d |
|
| 48 |
32 34 47
|
3eqtrd |
|
| 49 |
30 48
|
breqtrrd |
|