Metamath Proof Explorer


Theorem effsumlt

Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses effsumlt.1 F = n 0 A n n !
effsumlt.2 φ A +
effsumlt.3 φ N 0
Assertion effsumlt φ seq 0 + F N < e A

Proof

Step Hyp Ref Expression
1 effsumlt.1 F = n 0 A n n !
2 effsumlt.2 φ A +
3 effsumlt.3 φ N 0
4 nn0uz 0 = 0
5 0zd φ 0
6 1 eftval k 0 F k = A k k !
7 6 adantl φ k 0 F k = A k k !
8 2 rpred φ A
9 reeftcl A k 0 A k k !
10 8 9 sylan φ k 0 A k k !
11 7 10 eqeltrd φ k 0 F k
12 4 5 11 serfre φ seq 0 + F : 0
13 12 3 ffvelrnd φ seq 0 + F N
14 eqid N + 1 = N + 1
15 peano2nn0 N 0 N + 1 0
16 3 15 syl φ N + 1 0
17 eqidd φ k 0 F k = F k
18 nn0z k 0 k
19 rpexpcl A + k A k +
20 2 18 19 syl2an φ k 0 A k +
21 faccl k 0 k !
22 21 adantl φ k 0 k !
23 22 nnrpd φ k 0 k ! +
24 20 23 rpdivcld φ k 0 A k k ! +
25 7 24 eqeltrd φ k 0 F k +
26 8 recnd φ A
27 1 efcllem A seq 0 + F dom
28 26 27 syl φ seq 0 + F dom
29 4 14 16 17 25 28 isumrpcl φ k N + 1 F k +
30 13 29 ltaddrpd φ seq 0 + F N < seq 0 + F N + k N + 1 F k
31 1 efval2 A e A = k 0 F k
32 26 31 syl φ e A = k 0 F k
33 11 recnd φ k 0 F k
34 4 14 16 17 33 28 isumsplit φ k 0 F k = k = 0 N + 1 - 1 F k + k N + 1 F k
35 3 nn0cnd φ N
36 ax-1cn 1
37 pncan N 1 N + 1 - 1 = N
38 35 36 37 sylancl φ N + 1 - 1 = N
39 38 oveq2d φ 0 N + 1 - 1 = 0 N
40 39 sumeq1d φ k = 0 N + 1 - 1 F k = k = 0 N F k
41 eqidd φ k 0 N F k = F k
42 3 4 eleqtrdi φ N 0
43 elfznn0 k 0 N k 0
44 43 33 sylan2 φ k 0 N F k
45 41 42 44 fsumser φ k = 0 N F k = seq 0 + F N
46 40 45 eqtrd φ k = 0 N + 1 - 1 F k = seq 0 + F N
47 46 oveq1d φ k = 0 N + 1 - 1 F k + k N + 1 F k = seq 0 + F N + k N + 1 F k
48 32 34 47 3eqtrd φ e A = seq 0 + F N + k N + 1 F k
49 30 48 breqtrrd φ seq 0 + F N < e A