Metamath Proof Explorer


Theorem efgcpbl

Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgcpbl A W B W X ˙ Y A ++ X ++ B ˙ A ++ Y ++ B

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 eqid i j | i j W A ++ i ++ B ˙ A ++ j ++ B = i j | i j W A ++ i ++ B ˙ A ++ j ++ B
8 1 2 3 4 5 6 7 efgcpbllemb A W B W ˙ i j | i j W A ++ i ++ B ˙ A ++ j ++ B
9 8 ssbrd A W B W X ˙ Y X i j | i j W A ++ i ++ B ˙ A ++ j ++ B Y
10 9 3impia A W B W X ˙ Y X i j | i j W A ++ i ++ B ˙ A ++ j ++ B Y
11 1 2 3 4 5 6 7 efgcpbllema X i j | i j W A ++ i ++ B ˙ A ++ j ++ B Y X W Y W A ++ X ++ B ˙ A ++ Y ++ B
12 11 simp3bi X i j | i j W A ++ i ++ B ˙ A ++ j ++ B Y A ++ X ++ B ˙ A ++ Y ++ B
13 10 12 syl A W B W X ˙ Y A ++ X ++ B ˙ A ++ Y ++ B