Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
efgval2.m |
|
4 |
|
efgval2.t |
|
5 |
|
efgred.d |
|
6 |
|
efgred.s |
|
7 |
1 2
|
efger |
|
8 |
7
|
a1i |
|
9 |
|
simpl |
|
10 |
8 9
|
ercl |
|
11 |
|
wrd0 |
|
12 |
1
|
efgrcl |
|
13 |
10 12
|
syl |
|
14 |
13
|
simprd |
|
15 |
11 14
|
eleqtrrid |
|
16 |
|
simpr |
|
17 |
1 2 3 4 5 6
|
efgcpbl |
|
18 |
10 15 16 17
|
syl3anc |
|
19 |
10 14
|
eleqtrd |
|
20 |
8 16
|
ercl |
|
21 |
20 14
|
eleqtrd |
|
22 |
|
ccatcl |
|
23 |
19 21 22
|
syl2anc |
|
24 |
|
ccatrid |
|
25 |
23 24
|
syl |
|
26 |
8 16
|
ercl2 |
|
27 |
26 14
|
eleqtrd |
|
28 |
|
ccatcl |
|
29 |
19 27 28
|
syl2anc |
|
30 |
|
ccatrid |
|
31 |
29 30
|
syl |
|
32 |
18 25 31
|
3brtr3d |
|
33 |
1 2 3 4 5 6
|
efgcpbl |
|
34 |
15 26 9 33
|
syl3anc |
|
35 |
|
ccatlid |
|
36 |
19 35
|
syl |
|
37 |
36
|
oveq1d |
|
38 |
8 9
|
ercl2 |
|
39 |
38 14
|
eleqtrd |
|
40 |
|
ccatlid |
|
41 |
39 40
|
syl |
|
42 |
41
|
oveq1d |
|
43 |
34 37 42
|
3brtr3d |
|
44 |
8 32 43
|
ertrd |
|