Metamath Proof Explorer


Theorem efgcpbllema

Description: Lemma for efgrelex . Define an auxiliary equivalence relation L such that A L B if there are sequences from A to B passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
efgcpbllem.1 L = i j | i j W A ++ i ++ B ˙ A ++ j ++ B
Assertion efgcpbllema X L Y X W Y W A ++ X ++ B ˙ A ++ Y ++ B

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 efgcpbllem.1 L = i j | i j W A ++ i ++ B ˙ A ++ j ++ B
8 oveq2 i = X A ++ i = A ++ X
9 8 oveq1d i = X A ++ i ++ B = A ++ X ++ B
10 oveq2 j = Y A ++ j = A ++ Y
11 10 oveq1d j = Y A ++ j ++ B = A ++ Y ++ B
12 9 11 breqan12d i = X j = Y A ++ i ++ B ˙ A ++ j ++ B A ++ X ++ B ˙ A ++ Y ++ B
13 vex i V
14 vex j V
15 13 14 prss i W j W i j W
16 15 anbi1i i W j W A ++ i ++ B ˙ A ++ j ++ B i j W A ++ i ++ B ˙ A ++ j ++ B
17 16 opabbii i j | i W j W A ++ i ++ B ˙ A ++ j ++ B = i j | i j W A ++ i ++ B ˙ A ++ j ++ B
18 7 17 eqtr4i L = i j | i W j W A ++ i ++ B ˙ A ++ j ++ B
19 12 18 brab2a X L Y X W Y W A ++ X ++ B ˙ A ++ Y ++ B
20 df-3an X W Y W A ++ X ++ B ˙ A ++ Y ++ B X W Y W A ++ X ++ B ˙ A ++ Y ++ B
21 19 20 bitr4i X L Y X W Y W A ++ X ++ B ˙ A ++ Y ++ B