Metamath Proof Explorer


Theorem efger

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
Assertion efger ˙ErW

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 1 efglem rrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩
4 abn0 r|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩rrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩
5 3 4 mpbir r|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩
6 ereq1 w=rwErWrErW
7 6 ralab2 wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErWrrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩rErW
8 simpl rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩rErW
9 7 8 mpgbir wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErW
10 iiner r|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErWwr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErW
11 5 9 10 mp2an wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErW
12 1 2 efgval ˙=r|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩
13 intiin r|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩=wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩w
14 12 13 eqtri ˙=wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩w
15 ereq1 ˙=wr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩w˙ErWwr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErW
16 14 15 ax-mp ˙ErWwr|rErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩wErW
17 11 16 mpbir ˙ErW