Step |
Hyp |
Ref |
Expression |
1 |
|
efgh.1 |
|
2 |
|
simp1l |
|
3 |
|
simp1r |
|
4 |
|
cnfldbas |
|
5 |
4
|
subgss |
|
6 |
3 5
|
syl |
|
7 |
|
simp2 |
|
8 |
6 7
|
sseldd |
|
9 |
|
simp3 |
|
10 |
6 9
|
sseldd |
|
11 |
2 8 10
|
adddid |
|
12 |
11
|
fveq2d |
|
13 |
2 8
|
mulcld |
|
14 |
2 10
|
mulcld |
|
15 |
|
efadd |
|
16 |
13 14 15
|
syl2anc |
|
17 |
12 16
|
eqtrd |
|
18 |
|
oveq2 |
|
19 |
18
|
fveq2d |
|
20 |
19
|
cbvmptv |
|
21 |
1 20
|
eqtri |
|
22 |
|
oveq2 |
|
23 |
22
|
fveq2d |
|
24 |
|
cnfldadd |
|
25 |
24
|
subgcl |
|
26 |
25
|
3adant1l |
|
27 |
|
fvexd |
|
28 |
21 23 26 27
|
fvmptd3 |
|
29 |
|
oveq2 |
|
30 |
29
|
fveq2d |
|
31 |
|
fvexd |
|
32 |
21 30 7 31
|
fvmptd3 |
|
33 |
|
oveq2 |
|
34 |
33
|
fveq2d |
|
35 |
|
fvexd |
|
36 |
21 34 9 35
|
fvmptd3 |
|
37 |
32 36
|
oveq12d |
|
38 |
17 28 37
|
3eqtr4d |
|