Metamath Proof Explorer


Theorem efgh

Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 11-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypothesis efgh.1 F = x X e A x
Assertion efgh A X SubGrp fld B X C X F B + C = F B F C

Proof

Step Hyp Ref Expression
1 efgh.1 F = x X e A x
2 simp1l A X SubGrp fld B X C X A
3 simp1r A X SubGrp fld B X C X X SubGrp fld
4 cnfldbas = Base fld
5 4 subgss X SubGrp fld X
6 3 5 syl A X SubGrp fld B X C X X
7 simp2 A X SubGrp fld B X C X B X
8 6 7 sseldd A X SubGrp fld B X C X B
9 simp3 A X SubGrp fld B X C X C X
10 6 9 sseldd A X SubGrp fld B X C X C
11 2 8 10 adddid A X SubGrp fld B X C X A B + C = A B + A C
12 11 fveq2d A X SubGrp fld B X C X e A B + C = e A B + A C
13 2 8 mulcld A X SubGrp fld B X C X A B
14 2 10 mulcld A X SubGrp fld B X C X A C
15 efadd A B A C e A B + A C = e A B e A C
16 13 14 15 syl2anc A X SubGrp fld B X C X e A B + A C = e A B e A C
17 12 16 eqtrd A X SubGrp fld B X C X e A B + C = e A B e A C
18 oveq2 x = y A x = A y
19 18 fveq2d x = y e A x = e A y
20 19 cbvmptv x X e A x = y X e A y
21 1 20 eqtri F = y X e A y
22 oveq2 y = B + C A y = A B + C
23 22 fveq2d y = B + C e A y = e A B + C
24 cnfldadd + = + fld
25 24 subgcl X SubGrp fld B X C X B + C X
26 25 3adant1l A X SubGrp fld B X C X B + C X
27 fvexd A X SubGrp fld B X C X e A B + C V
28 21 23 26 27 fvmptd3 A X SubGrp fld B X C X F B + C = e A B + C
29 oveq2 y = B A y = A B
30 29 fveq2d y = B e A y = e A B
31 fvexd A X SubGrp fld B X C X e A B V
32 21 30 7 31 fvmptd3 A X SubGrp fld B X C X F B = e A B
33 oveq2 y = C A y = A C
34 33 fveq2d y = C e A y = e A C
35 fvexd A X SubGrp fld B X C X e A C V
36 21 34 9 35 fvmptd3 A X SubGrp fld B X C X F C = e A C
37 32 36 oveq12d A X SubGrp fld B X C X F B F C = e A B e A C
38 17 28 37 3eqtr4d A X SubGrp fld B X C X F B + C = F B F C