Metamath Proof Explorer


Theorem efginvrel1

Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
Assertion efginvrel1 A W M reverse A ++ A ˙

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 fviss I Word I × 2 𝑜 Word I × 2 𝑜
6 1 5 eqsstri W Word I × 2 𝑜
7 6 sseli A W A Word I × 2 𝑜
8 revcl A Word I × 2 𝑜 reverse A Word I × 2 𝑜
9 7 8 syl A W reverse A Word I × 2 𝑜
10 3 efgmf M : I × 2 𝑜 I × 2 𝑜
11 revco reverse A Word I × 2 𝑜 M : I × 2 𝑜 I × 2 𝑜 M reverse reverse A = reverse M reverse A
12 9 10 11 sylancl A W M reverse reverse A = reverse M reverse A
13 revrev A Word I × 2 𝑜 reverse reverse A = A
14 7 13 syl A W reverse reverse A = A
15 14 coeq2d A W M reverse reverse A = M A
16 12 15 eqtr3d A W reverse M reverse A = M A
17 16 coeq2d A W M reverse M reverse A = M M A
18 wrdf A Word I × 2 𝑜 A : 0 ..^ A I × 2 𝑜
19 7 18 syl A W A : 0 ..^ A I × 2 𝑜
20 19 ffvelrnda A W c 0 ..^ A A c I × 2 𝑜
21 3 efgmnvl A c I × 2 𝑜 M M A c = A c
22 20 21 syl A W c 0 ..^ A M M A c = A c
23 22 mpteq2dva A W c 0 ..^ A M M A c = c 0 ..^ A A c
24 10 ffvelrni A c I × 2 𝑜 M A c I × 2 𝑜
25 20 24 syl A W c 0 ..^ A M A c I × 2 𝑜
26 fcompt M : I × 2 𝑜 I × 2 𝑜 A : 0 ..^ A I × 2 𝑜 M A = c 0 ..^ A M A c
27 10 19 26 sylancr A W M A = c 0 ..^ A M A c
28 10 a1i A W M : I × 2 𝑜 I × 2 𝑜
29 28 feqmptd A W M = a I × 2 𝑜 M a
30 fveq2 a = M A c M a = M M A c
31 25 27 29 30 fmptco A W M M A = c 0 ..^ A M M A c
32 19 feqmptd A W A = c 0 ..^ A A c
33 23 31 32 3eqtr4d A W M M A = A
34 17 33 eqtrd A W M reverse M reverse A = A
35 34 oveq2d A W M reverse A ++ M reverse M reverse A = M reverse A ++ A
36 wrdco reverse A Word I × 2 𝑜 M : I × 2 𝑜 I × 2 𝑜 M reverse A Word I × 2 𝑜
37 9 10 36 sylancl A W M reverse A Word I × 2 𝑜
38 1 efgrcl A W I V W = Word I × 2 𝑜
39 38 simprd A W W = Word I × 2 𝑜
40 37 39 eleqtrrd A W M reverse A W
41 1 2 3 4 efginvrel2 M reverse A W M reverse A ++ M reverse M reverse A ˙
42 40 41 syl A W M reverse A ++ M reverse M reverse A ˙
43 35 42 eqbrtrrd A W M reverse A ++ A ˙