Metamath Proof Explorer


Theorem efglem

Description: Lemma for efgval . (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypothesis efgval.w W = I Word I × 2 𝑜
Assertion efglem r r Er W x W n 0 x y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 xpider W × W Er W
3 simpll x W n 0 x y I z 2 𝑜 x W
4 fviss I Word I × 2 𝑜 Word I × 2 𝑜
5 1 4 eqsstri W Word I × 2 𝑜
6 5 3 sselid x W n 0 x y I z 2 𝑜 x Word I × 2 𝑜
7 opelxpi y I z 2 𝑜 y z I × 2 𝑜
8 7 adantl x W n 0 x y I z 2 𝑜 y z I × 2 𝑜
9 2oconcl z 2 𝑜 1 𝑜 z 2 𝑜
10 opelxpi y I 1 𝑜 z 2 𝑜 y 1 𝑜 z I × 2 𝑜
11 9 10 sylan2 y I z 2 𝑜 y 1 𝑜 z I × 2 𝑜
12 11 adantl x W n 0 x y I z 2 𝑜 y 1 𝑜 z I × 2 𝑜
13 8 12 s2cld x W n 0 x y I z 2 𝑜 ⟨“ y z y 1 𝑜 z ”⟩ Word I × 2 𝑜
14 splcl x Word I × 2 𝑜 ⟨“ y z y 1 𝑜 z ”⟩ Word I × 2 𝑜 x splice n n ⟨“ y z y 1 𝑜 z ”⟩ Word I × 2 𝑜
15 6 13 14 syl2anc x W n 0 x y I z 2 𝑜 x splice n n ⟨“ y z y 1 𝑜 z ”⟩ Word I × 2 𝑜
16 1 efgrcl x W I V W = Word I × 2 𝑜
17 16 simprd x W W = Word I × 2 𝑜
18 17 ad2antrr x W n 0 x y I z 2 𝑜 W = Word I × 2 𝑜
19 15 18 eleqtrrd x W n 0 x y I z 2 𝑜 x splice n n ⟨“ y z y 1 𝑜 z ”⟩ W
20 brxp x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩ x W x splice n n ⟨“ y z y 1 𝑜 z ”⟩ W
21 3 19 20 sylanbrc x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
22 21 ralrimivva x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
23 22 rgen2 x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
24 1 fvexi W V
25 24 24 xpex W × W V
26 ereq1 r = W × W r Er W W × W Er W
27 breq r = W × W x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩ x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
28 27 2ralbidv r = W × W y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩ y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
29 28 2ralbidv r = W × W x W n 0 x y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩ x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
30 26 29 anbi12d r = W × W r Er W x W n 0 x y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩ W × W Er W x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩
31 25 30 spcev W × W Er W x W n 0 x y I z 2 𝑜 x W × W x splice n n ⟨“ y z y 1 𝑜 z ”⟩ r r Er W x W n 0 x y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
32 2 23 31 mp2an r r Er W x W n 0 x y I z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩