Metamath Proof Explorer


Theorem efgrcl

Description: Lemma for efgval . (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis efgval.w W = I Word I × 2 𝑜
Assertion efgrcl A W I V W = Word I × 2 𝑜

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 2on0 2 𝑜
3 dmxp 2 𝑜 dom I × 2 𝑜 = I
4 2 3 ax-mp dom I × 2 𝑜 = I
5 elfvex A I Word I × 2 𝑜 Word I × 2 𝑜 V
6 5 1 eleq2s A W Word I × 2 𝑜 V
7 wrdexb I × 2 𝑜 V Word I × 2 𝑜 V
8 6 7 sylibr A W I × 2 𝑜 V
9 8 dmexd A W dom I × 2 𝑜 V
10 4 9 eqeltrrid A W I V
11 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
12 6 11 syl A W I Word I × 2 𝑜 = Word I × 2 𝑜
13 1 12 eqtrid A W W = Word I × 2 𝑜
14 10 13 jca A W I V W = Word I × 2 𝑜