Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
efgval2.m |
|
4 |
|
efgval2.t |
|
5 |
|
efgred.d |
|
6 |
|
efgred.s |
|
7 |
|
efgredlem.1 |
|
8 |
|
efgredlem.2 |
|
9 |
|
efgredlem.3 |
|
10 |
|
efgredlem.4 |
|
11 |
|
efgredlem.5 |
|
12 |
1 2 3 4 5 6
|
efgsval |
|
13 |
9 12
|
syl |
|
14 |
1 2 3 4 5 6
|
efgsval |
|
15 |
8 14
|
syl |
|
16 |
10 15
|
eqtr3d |
|
17 |
13 16
|
eqtr3d |
|
18 |
|
oveq1 |
|
19 |
|
1m1e0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
20
|
fveq2d |
|
22 |
17 21
|
sylan9eq |
|
23 |
10
|
eleq1d |
|
24 |
1 2 3 4 5 6
|
efgs1b |
|
25 |
8 24
|
syl |
|
26 |
1 2 3 4 5 6
|
efgs1b |
|
27 |
9 26
|
syl |
|
28 |
23 25 27
|
3bitr3d |
|
29 |
28
|
biimpa |
|
30 |
|
oveq1 |
|
31 |
30 19
|
eqtrdi |
|
32 |
31
|
fveq2d |
|
33 |
29 32
|
syl |
|
34 |
22 33
|
eqtr3d |
|
35 |
11 34
|
mtand |
|
36 |
1 2 3 4 5 6
|
efgsdm |
|
37 |
36
|
simp1bi |
|
38 |
|
eldifsn |
|
39 |
|
lennncl |
|
40 |
38 39
|
sylbi |
|
41 |
8 37 40
|
3syl |
|
42 |
|
elnn1uz2 |
|
43 |
41 42
|
sylib |
|
44 |
43
|
ord |
|
45 |
35 44
|
mpd |
|
46 |
|
uz2m1nn |
|
47 |
45 46
|
syl |
|
48 |
35 28
|
mtbid |
|
49 |
1 2 3 4 5 6
|
efgsdm |
|
50 |
49
|
simp1bi |
|
51 |
|
eldifsn |
|
52 |
|
lennncl |
|
53 |
51 52
|
sylbi |
|
54 |
9 50 53
|
3syl |
|
55 |
|
elnn1uz2 |
|
56 |
54 55
|
sylib |
|
57 |
56
|
ord |
|
58 |
48 57
|
mpd |
|
59 |
|
uz2m1nn |
|
60 |
58 59
|
syl |
|
61 |
47 60
|
jca |
|