Metamath Proof Explorer


Theorem efgredlemf

Description: Lemma for efgredleme . (Contributed by Mario Carneiro, 4-Jun-2016)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
efgredlem.1 φ a dom S b dom S S a < S A S a = S b a 0 = b 0
efgredlem.2 φ A dom S
efgredlem.3 φ B dom S
efgredlem.4 φ S A = S B
efgredlem.5 φ ¬ A 0 = B 0
efgredlemb.k K = A - 1 - 1
efgredlemb.l L = B - 1 - 1
Assertion efgredlemf φ A K W B L W

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 efgredlem.1 φ a dom S b dom S S a < S A S a = S b a 0 = b 0
8 efgredlem.2 φ A dom S
9 efgredlem.3 φ B dom S
10 efgredlem.4 φ S A = S B
11 efgredlem.5 φ ¬ A 0 = B 0
12 efgredlemb.k K = A - 1 - 1
13 efgredlemb.l L = B - 1 - 1
14 1 2 3 4 5 6 efgsdm A dom S A Word W A 0 D i 1 ..^ A A i ran T A i 1
15 14 simp1bi A dom S A Word W
16 8 15 syl φ A Word W
17 16 eldifad φ A Word W
18 wrdf A Word W A : 0 ..^ A W
19 17 18 syl φ A : 0 ..^ A W
20 fzossfz 0 ..^ A 1 0 A 1
21 lencl A Word W A 0
22 17 21 syl φ A 0
23 22 nn0zd φ A
24 fzoval A 0 ..^ A = 0 A 1
25 23 24 syl φ 0 ..^ A = 0 A 1
26 20 25 sseqtrrid φ 0 ..^ A 1 0 ..^ A
27 1 2 3 4 5 6 7 8 9 10 11 efgredlema φ A 1 B 1
28 27 simpld φ A 1
29 fzo0end A 1 A - 1 - 1 0 ..^ A 1
30 28 29 syl φ A - 1 - 1 0 ..^ A 1
31 12 30 eqeltrid φ K 0 ..^ A 1
32 26 31 sseldd φ K 0 ..^ A
33 19 32 ffvelrnd φ A K W
34 1 2 3 4 5 6 efgsdm B dom S B Word W B 0 D i 1 ..^ B B i ran T B i 1
35 34 simp1bi B dom S B Word W
36 9 35 syl φ B Word W
37 36 eldifad φ B Word W
38 wrdf B Word W B : 0 ..^ B W
39 37 38 syl φ B : 0 ..^ B W
40 fzossfz 0 ..^ B 1 0 B 1
41 lencl B Word W B 0
42 37 41 syl φ B 0
43 42 nn0zd φ B
44 fzoval B 0 ..^ B = 0 B 1
45 43 44 syl φ 0 ..^ B = 0 B 1
46 40 45 sseqtrrid φ 0 ..^ B 1 0 ..^ B
47 fzo0end B 1 B - 1 - 1 0 ..^ B 1
48 27 47 simpl2im φ B - 1 - 1 0 ..^ B 1
49 13 48 eqeltrid φ L 0 ..^ B 1
50 46 49 sseldd φ L 0 ..^ B
51 39 50 ffvelrnd φ B L W
52 33 51 jca φ A K W B L W