| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|
| 2 |
|
efgval.r |
|
| 3 |
|
efgval2.m |
|
| 4 |
|
efgval2.t |
|
| 5 |
|
efgred.d |
|
| 6 |
|
efgred.s |
|
| 7 |
|
efgredlem.1 |
|
| 8 |
|
efgredlem.2 |
|
| 9 |
|
efgredlem.3 |
|
| 10 |
|
efgredlem.4 |
|
| 11 |
|
efgredlem.5 |
|
| 12 |
|
efgredlemb.k |
|
| 13 |
|
efgredlemb.l |
|
| 14 |
|
efgredlemb.p |
|
| 15 |
|
efgredlemb.q |
|
| 16 |
|
efgredlemb.u |
|
| 17 |
|
efgredlemb.v |
|
| 18 |
|
efgredlemb.6 |
|
| 19 |
|
efgredlemb.7 |
|
| 20 |
|
fviss |
|
| 21 |
1 20
|
eqsstri |
|
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
efgredlemf |
|
| 23 |
22
|
simpld |
|
| 24 |
21 23
|
sselid |
|
| 25 |
|
lencl |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
nn0cnd |
|
| 28 |
22
|
simprd |
|
| 29 |
21 28
|
sselid |
|
| 30 |
|
lencl |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
nn0cnd |
|
| 33 |
|
2cnd |
|
| 34 |
1 2 3 4 5 6 7 8 9 10 11
|
efgredlema |
|
| 35 |
34
|
simpld |
|
| 36 |
1 2 3 4 5 6
|
efgsdmi |
|
| 37 |
8 35 36
|
syl2anc |
|
| 38 |
12
|
fveq2i |
|
| 39 |
38
|
fveq2i |
|
| 40 |
39
|
rneqi |
|
| 41 |
37 40
|
eleqtrrdi |
|
| 42 |
1 2 3 4
|
efgtlen |
|
| 43 |
23 41 42
|
syl2anc |
|
| 44 |
34
|
simprd |
|
| 45 |
1 2 3 4 5 6
|
efgsdmi |
|
| 46 |
9 44 45
|
syl2anc |
|
| 47 |
10 46
|
eqeltrd |
|
| 48 |
13
|
fveq2i |
|
| 49 |
48
|
fveq2i |
|
| 50 |
49
|
rneqi |
|
| 51 |
47 50
|
eleqtrrdi |
|
| 52 |
1 2 3 4
|
efgtlen |
|
| 53 |
28 51 52
|
syl2anc |
|
| 54 |
43 53
|
eqtr3d |
|
| 55 |
27 32 33 54
|
addcan2ad |
|