Metamath Proof Explorer


Theorem efgrelex

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgrelex A ˙ B a S -1 A b S -1 B a 0 = b 0

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 eqid i j | c S -1 i d S -1 j c 0 = d 0 = i j | c S -1 i d S -1 j c 0 = d 0
8 1 2 3 4 5 6 7 efgrelexlemb ˙ i j | c S -1 i d S -1 j c 0 = d 0
9 8 ssbri A ˙ B A i j | c S -1 i d S -1 j c 0 = d 0 B
10 1 2 3 4 5 6 7 efgrelexlema A i j | c S -1 i d S -1 j c 0 = d 0 B a S -1 A b S -1 B a 0 = b 0
11 9 10 sylib A ˙ B a S -1 A b S -1 B a 0 = b 0