Metamath Proof Explorer


Theorem efgrelexlema

Description: If two words A , B are related under the free group equivalence, then there exist two extension sequences a , b such that a ends at A , b ends at B , and a and B have the same starting point. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
efgrelexlem.1 L = i j | c S -1 i d S -1 j c 0 = d 0
Assertion efgrelexlema A L B a S -1 A b S -1 B a 0 = b 0

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 efgrelexlem.1 L = i j | c S -1 i d S -1 j c 0 = d 0
8 7 bropaex12 A L B A V B V
9 n0i a S -1 A ¬ S -1 A =
10 snprc ¬ A V A =
11 imaeq2 A = S -1 A = S -1
12 10 11 sylbi ¬ A V S -1 A = S -1
13 ima0 S -1 =
14 12 13 eqtrdi ¬ A V S -1 A =
15 9 14 nsyl2 a S -1 A A V
16 n0i b S -1 B ¬ S -1 B =
17 snprc ¬ B V B =
18 imaeq2 B = S -1 B = S -1
19 17 18 sylbi ¬ B V S -1 B = S -1
20 19 13 eqtrdi ¬ B V S -1 B =
21 16 20 nsyl2 b S -1 B B V
22 15 21 anim12i a S -1 A b S -1 B A V B V
23 22 a1d a S -1 A b S -1 B a 0 = b 0 A V B V
24 23 rexlimivv a S -1 A b S -1 B a 0 = b 0 A V B V
25 fveq1 c = a c 0 = a 0
26 25 eqeq1d c = a c 0 = d 0 a 0 = d 0
27 fveq1 d = b d 0 = b 0
28 27 eqeq2d d = b a 0 = d 0 a 0 = b 0
29 26 28 cbvrex2vw c S -1 i d S -1 j c 0 = d 0 a S -1 i b S -1 j a 0 = b 0
30 sneq i = A i = A
31 30 imaeq2d i = A S -1 i = S -1 A
32 31 rexeqdv i = A a S -1 i b S -1 j a 0 = b 0 a S -1 A b S -1 j a 0 = b 0
33 29 32 syl5bb i = A c S -1 i d S -1 j c 0 = d 0 a S -1 A b S -1 j a 0 = b 0
34 sneq j = B j = B
35 34 imaeq2d j = B S -1 j = S -1 B
36 35 rexeqdv j = B b S -1 j a 0 = b 0 b S -1 B a 0 = b 0
37 36 rexbidv j = B a S -1 A b S -1 j a 0 = b 0 a S -1 A b S -1 B a 0 = b 0
38 33 37 7 brabg A V B V A L B a S -1 A b S -1 B a 0 = b 0
39 8 24 38 pm5.21nii A L B a S -1 A b S -1 B a 0 = b 0