Metamath Proof Explorer


Theorem efgs1

Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgs1 A D ⟨“ A ”⟩ dom S

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 eldifi A W x W ran T x A W
8 7 5 eleq2s A D A W
9 8 s1cld A D ⟨“ A ”⟩ Word W
10 s1nz ⟨“ A ”⟩
11 eldifsn ⟨“ A ”⟩ Word W ⟨“ A ”⟩ Word W ⟨“ A ”⟩
12 9 10 11 sylanblrc A D ⟨“ A ”⟩ Word W
13 s1fv A D ⟨“ A ”⟩ 0 = A
14 id A D A D
15 13 14 eqeltrd A D ⟨“ A ”⟩ 0 D
16 s1len ⟨“ A ”⟩ = 1
17 16 a1i A D ⟨“ A ”⟩ = 1
18 17 oveq2d A D 1 ..^ ⟨“ A ”⟩ = 1 ..^ 1
19 fzo0 1 ..^ 1 =
20 18 19 eqtrdi A D 1 ..^ ⟨“ A ”⟩ =
21 rzal 1 ..^ ⟨“ A ”⟩ = i 1 ..^ ⟨“ A ”⟩ ⟨“ A ”⟩ i ran T ⟨“ A ”⟩ i 1
22 20 21 syl A D i 1 ..^ ⟨“ A ”⟩ ⟨“ A ”⟩ i ran T ⟨“ A ”⟩ i 1
23 1 2 3 4 5 6 efgsdm ⟨“ A ”⟩ dom S ⟨“ A ”⟩ Word W ⟨“ A ”⟩ 0 D i 1 ..^ ⟨“ A ”⟩ ⟨“ A ”⟩ i ran T ⟨“ A ”⟩ i 1
24 12 15 22 23 syl3anbrc A D ⟨“ A ”⟩ dom S