Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
efgval2.m |
|
4 |
|
efgval2.t |
|
5 |
|
efgred.d |
|
6 |
|
efgred.s |
|
7 |
|
eldifn |
|
8 |
7 5
|
eleq2s |
|
9 |
1 2 3 4 5 6
|
efgsdm |
|
10 |
9
|
simp1bi |
|
11 |
|
eldifsn |
|
12 |
|
lennncl |
|
13 |
11 12
|
sylbi |
|
14 |
10 13
|
syl |
|
15 |
|
elnn1uz2 |
|
16 |
14 15
|
sylib |
|
17 |
16
|
ord |
|
18 |
10
|
eldifad |
|
19 |
18
|
adantr |
|
20 |
|
wrdf |
|
21 |
19 20
|
syl |
|
22 |
|
1z |
|
23 |
|
simpr |
|
24 |
|
df-2 |
|
25 |
24
|
fveq2i |
|
26 |
23 25
|
eleqtrdi |
|
27 |
|
eluzp1m1 |
|
28 |
22 26 27
|
sylancr |
|
29 |
|
nnuz |
|
30 |
28 29
|
eleqtrrdi |
|
31 |
|
lbfzo0 |
|
32 |
30 31
|
sylibr |
|
33 |
|
fzoend |
|
34 |
|
elfzofz |
|
35 |
32 33 34
|
3syl |
|
36 |
|
eluzelz |
|
37 |
36
|
adantl |
|
38 |
|
fzoval |
|
39 |
37 38
|
syl |
|
40 |
35 39
|
eleqtrrd |
|
41 |
21 40
|
ffvelrnd |
|
42 |
|
uz2m1nn |
|
43 |
1 2 3 4 5 6
|
efgsdmi |
|
44 |
42 43
|
sylan2 |
|
45 |
|
fveq2 |
|
46 |
45
|
rneqd |
|
47 |
46
|
eliuni |
|
48 |
41 44 47
|
syl2anc |
|
49 |
|
fveq2 |
|
50 |
49
|
rneqd |
|
51 |
50
|
cbviunv |
|
52 |
48 51
|
eleqtrdi |
|
53 |
52
|
ex |
|
54 |
17 53
|
syld |
|
55 |
54
|
con1d |
|
56 |
8 55
|
syl5 |
|
57 |
9
|
simp2bi |
|
58 |
|
oveq1 |
|
59 |
|
1m1e0 |
|
60 |
58 59
|
eqtrdi |
|
61 |
60
|
fveq2d |
|
62 |
61
|
eleq1d |
|
63 |
57 62
|
syl5ibrcom |
|
64 |
1 2 3 4 5 6
|
efgsval |
|
65 |
64
|
eleq1d |
|
66 |
63 65
|
sylibrd |
|
67 |
56 66
|
impbid |
|