Metamath Proof Explorer


Theorem efgsdmi

Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsdmi F dom S F 1 S F ran T F F - 1 - 1

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 1 2 3 4 5 6 efgsval F dom S S F = F F 1
8 7 adantr F dom S F 1 S F = F F 1
9 fveq2 i = F 1 F i = F F 1
10 fvoveq1 i = F 1 F i 1 = F F - 1 - 1
11 10 fveq2d i = F 1 T F i 1 = T F F - 1 - 1
12 11 rneqd i = F 1 ran T F i 1 = ran T F F - 1 - 1
13 9 12 eleq12d i = F 1 F i ran T F i 1 F F 1 ran T F F - 1 - 1
14 1 2 3 4 5 6 efgsdm F dom S F Word W F 0 D i 1 ..^ F F i ran T F i 1
15 14 simp3bi F dom S i 1 ..^ F F i ran T F i 1
16 15 adantr F dom S F 1 i 1 ..^ F F i ran T F i 1
17 simpr F dom S F 1 F 1
18 nnuz = 1
19 17 18 eleqtrdi F dom S F 1 F 1 1
20 eluzfz1 F 1 1 1 1 F 1
21 19 20 syl F dom S F 1 1 1 F 1
22 14 simp1bi F dom S F Word W
23 22 adantr F dom S F 1 F Word W
24 23 eldifad F dom S F 1 F Word W
25 lencl F Word W F 0
26 nn0z F 0 F
27 fzoval F 1 ..^ F = 1 F 1
28 24 25 26 27 4syl F dom S F 1 1 ..^ F = 1 F 1
29 21 28 eleqtrrd F dom S F 1 1 1 ..^ F
30 fzoend 1 1 ..^ F F 1 1 ..^ F
31 29 30 syl F dom S F 1 F 1 1 ..^ F
32 13 16 31 rspcdva F dom S F 1 F F 1 ran T F F - 1 - 1
33 8 32 eqeltrd F dom S F 1 S F ran T F F - 1 - 1