Metamath Proof Explorer


Theorem efgsval

Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsval F dom S S F = F F 1

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 id f = F f = F
8 fveq2 f = F f = F
9 8 oveq1d f = F f 1 = F 1
10 7 9 fveq12d f = F f f 1 = F F 1
11 id m = f m = f
12 fveq2 m = f m = f
13 12 oveq1d m = f m 1 = f 1
14 11 13 fveq12d m = f m m 1 = f f 1
15 14 cbvmptv m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1 = f t Word W | t 0 D k 1 ..^ t t k ran T t k 1 f f 1
16 6 15 eqtri S = f t Word W | t 0 D k 1 ..^ t t k ran T t k 1 f f 1
17 fvex F F 1 V
18 10 16 17 fvmpt F t Word W | t 0 D k 1 ..^ t t k ran T t k 1 S F = F F 1
19 1 2 3 4 5 6 efgsf S : t Word W | t 0 D k 1 ..^ t t k ran T t k 1 W
20 19 fdmi dom S = t Word W | t 0 D k 1 ..^ t t k ran T t k 1
21 18 20 eleq2s F dom S S F = F F 1