Metamath Proof Explorer


Theorem efgsval2

Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsval2 A Word W B W A ++ ⟨“ B ”⟩ dom S S A ++ ⟨“ B ”⟩ = B

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 1 2 3 4 5 6 efgsval A ++ ⟨“ B ”⟩ dom S S A ++ ⟨“ B ”⟩ = A ++ ⟨“ B ”⟩ A ++ ⟨“ B ”⟩ 1
8 s1cl B W ⟨“ B ”⟩ Word W
9 ccatlen A Word W ⟨“ B ”⟩ Word W A ++ ⟨“ B ”⟩ = A + ⟨“ B ”⟩
10 8 9 sylan2 A Word W B W A ++ ⟨“ B ”⟩ = A + ⟨“ B ”⟩
11 s1len ⟨“ B ”⟩ = 1
12 11 oveq2i A + ⟨“ B ”⟩ = A + 1
13 10 12 eqtrdi A Word W B W A ++ ⟨“ B ”⟩ = A + 1
14 13 oveq1d A Word W B W A ++ ⟨“ B ”⟩ 1 = A + 1 - 1
15 lencl A Word W A 0
16 15 nn0cnd A Word W A
17 ax-1cn 1
18 pncan A 1 A + 1 - 1 = A
19 16 17 18 sylancl A Word W A + 1 - 1 = A
20 16 addid2d A Word W 0 + A = A
21 19 20 eqtr4d A Word W A + 1 - 1 = 0 + A
22 21 adantr A Word W B W A + 1 - 1 = 0 + A
23 14 22 eqtrd A Word W B W A ++ ⟨“ B ”⟩ 1 = 0 + A
24 23 fveq2d A Word W B W A ++ ⟨“ B ”⟩ A ++ ⟨“ B ”⟩ 1 = A ++ ⟨“ B ”⟩ 0 + A
25 simpl A Word W B W A Word W
26 8 adantl A Word W B W ⟨“ B ”⟩ Word W
27 1nn 1
28 11 27 eqeltri ⟨“ B ”⟩
29 lbfzo0 0 0 ..^ ⟨“ B ”⟩ ⟨“ B ”⟩
30 28 29 mpbir 0 0 ..^ ⟨“ B ”⟩
31 30 a1i A Word W B W 0 0 ..^ ⟨“ B ”⟩
32 ccatval3 A Word W ⟨“ B ”⟩ Word W 0 0 ..^ ⟨“ B ”⟩ A ++ ⟨“ B ”⟩ 0 + A = ⟨“ B ”⟩ 0
33 25 26 31 32 syl3anc A Word W B W A ++ ⟨“ B ”⟩ 0 + A = ⟨“ B ”⟩ 0
34 s1fv B W ⟨“ B ”⟩ 0 = B
35 34 adantl A Word W B W ⟨“ B ”⟩ 0 = B
36 24 33 35 3eqtrd A Word W B W A ++ ⟨“ B ”⟩ A ++ ⟨“ B ”⟩ 1 = B
37 7 36 sylan9eqr A Word W B W A ++ ⟨“ B ”⟩ dom S S A ++ ⟨“ B ”⟩ = B
38 37 3impa A Word W B W A ++ ⟨“ B ”⟩ dom S S A ++ ⟨“ B ”⟩ = B