Metamath Proof Explorer


Theorem efgt0

Description: The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion efgt0 A 0 < e A

Proof

Step Hyp Ref Expression
1 reefcl A e A
2 rehalfcl A A 2
3 2 reefcld A e A 2
4 3 sqge0d A 0 e A 2 2
5 2 recnd A A 2
6 2z 2
7 efexp A 2 2 e 2 A 2 = e A 2 2
8 5 6 7 sylancl A e 2 A 2 = e A 2 2
9 recn A A
10 2cn 2
11 2ne0 2 0
12 divcan2 A 2 2 0 2 A 2 = A
13 10 11 12 mp3an23 A 2 A 2 = A
14 9 13 syl A 2 A 2 = A
15 14 fveq2d A e 2 A 2 = e A
16 8 15 eqtr3d A e A 2 2 = e A
17 4 16 breqtrd A 0 e A
18 efne0 A e A 0
19 9 18 syl A e A 0
20 1 17 19 ne0gt0d A 0 < e A