Metamath Proof Explorer


Theorem efgt1p2

Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion efgt1p2 A + 1 + A + A 2 2 < e A

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 1nn0 1 0
3 2 a1i A + 1 0
4 df-2 2 = 1 + 1
5 rpcn A + A
6 0nn0 0 0
7 6 a1i A 0 0
8 1e0p1 1 = 0 + 1
9 0z 0
10 eqid n 0 A n n ! = n 0 A n n !
11 10 eftval 0 0 n 0 A n n ! 0 = A 0 0 !
12 6 11 ax-mp n 0 A n n ! 0 = A 0 0 !
13 eft0val A A 0 0 ! = 1
14 12 13 eqtrid A n 0 A n n ! 0 = 1
15 9 14 seq1i A seq 0 + n 0 A n n ! 0 = 1
16 10 eftval 1 0 n 0 A n n ! 1 = A 1 1 !
17 2 16 ax-mp n 0 A n n ! 1 = A 1 1 !
18 fac1 1 ! = 1
19 18 oveq2i A 1 1 ! = A 1 1
20 exp1 A A 1 = A
21 20 oveq1d A A 1 1 = A 1
22 div1 A A 1 = A
23 21 22 eqtrd A A 1 1 = A
24 19 23 eqtrid A A 1 1 ! = A
25 17 24 eqtrid A n 0 A n n ! 1 = A
26 1 7 8 15 25 seqp1d A seq 0 + n 0 A n n ! 1 = 1 + A
27 5 26 syl A + seq 0 + n 0 A n n ! 1 = 1 + A
28 2nn0 2 0
29 10 eftval 2 0 n 0 A n n ! 2 = A 2 2 !
30 28 29 ax-mp n 0 A n n ! 2 = A 2 2 !
31 fac2 2 ! = 2
32 31 oveq2i A 2 2 ! = A 2 2
33 30 32 eqtri n 0 A n n ! 2 = A 2 2
34 33 a1i A + n 0 A n n ! 2 = A 2 2
35 1 3 4 27 34 seqp1d A + seq 0 + n 0 A n n ! 2 = 1 + A + A 2 2
36 id A + A +
37 28 a1i A + 2 0
38 10 36 37 effsumlt A + seq 0 + n 0 A n n ! 2 < e A
39 35 38 eqbrtrrd A + 1 + A + A 2 2 < e A