Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
efgval2.m |
|
4 |
|
efgval2.t |
|
5 |
|
fviss |
|
6 |
1 5
|
eqsstri |
|
7 |
|
simpl |
|
8 |
6 7
|
sselid |
|
9 |
|
simprr |
|
10 |
3
|
efgmf |
|
11 |
10
|
ffvelrni |
|
12 |
11
|
ad2antll |
|
13 |
9 12
|
s2cld |
|
14 |
|
splcl |
|
15 |
8 13 14
|
syl2anc |
|
16 |
1
|
efgrcl |
|
17 |
16
|
simprd |
|
18 |
17
|
adantr |
|
19 |
15 18
|
eleqtrrd |
|
20 |
19
|
ralrimivva |
|
21 |
|
eqid |
|
22 |
21
|
fmpo |
|
23 |
20 22
|
sylib |
|
24 |
|
ovex |
|
25 |
16
|
simpld |
|
26 |
|
2on |
|
27 |
|
xpexg |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
xpexg |
|
30 |
24 28 29
|
sylancr |
|
31 |
23 30
|
fexd |
|
32 |
|
fveq2 |
|
33 |
32
|
oveq2d |
|
34 |
|
eqidd |
|
35 |
|
oveq1 |
|
36 |
33 34 35
|
mpoeq123dv |
|
37 |
|
oteq1 |
|
38 |
|
oteq2 |
|
39 |
37 38
|
eqtrd |
|
40 |
39
|
oveq2d |
|
41 |
|
id |
|
42 |
|
fveq2 |
|
43 |
41 42
|
s2eqd |
|
44 |
43
|
oteq3d |
|
45 |
44
|
oveq2d |
|
46 |
40 45
|
cbvmpov |
|
47 |
|
fveq2 |
|
48 |
47
|
oveq2d |
|
49 |
|
eqidd |
|
50 |
|
oveq1 |
|
51 |
48 49 50
|
mpoeq123dv |
|
52 |
46 51
|
eqtrid |
|
53 |
52
|
cbvmptv |
|
54 |
4 53
|
eqtri |
|
55 |
36 54
|
fvmptg |
|
56 |
31 55
|
mpdan |
|
57 |
56
|
feq1d |
|
58 |
23 57
|
mpbird |
|
59 |
56 58
|
jca |
|