Step |
Hyp |
Ref |
Expression |
1 |
|
efgval.w |
|
2 |
|
efgval.r |
|
3 |
|
vex |
|
4 |
|
2on |
|
5 |
4
|
elexi |
|
6 |
3 5
|
xpex |
|
7 |
|
wrdexg |
|
8 |
|
fvi |
|
9 |
6 7 8
|
mp2b |
|
10 |
|
xpeq1 |
|
11 |
|
wrdeq |
|
12 |
10 11
|
syl |
|
13 |
12
|
fveq2d |
|
14 |
9 13
|
eqtr3id |
|
15 |
14 1
|
eqtr4di |
|
16 |
|
ereq2 |
|
17 |
15 16
|
syl |
|
18 |
|
raleq |
|
19 |
18
|
ralbidv |
|
20 |
15 19
|
raleqbidv |
|
21 |
17 20
|
anbi12d |
|
22 |
21
|
abbidv |
|
23 |
22
|
inteqd |
|
24 |
|
df-efg |
|
25 |
1
|
efglem |
|
26 |
|
intexab |
|
27 |
25 26
|
mpbi |
|
28 |
23 24 27
|
fvmpt |
|
29 |
|
fvprc |
|
30 |
|
abn0 |
|
31 |
25 30
|
mpbir |
|
32 |
|
intssuni |
|
33 |
31 32
|
ax-mp |
|
34 |
|
erssxp |
|
35 |
1
|
efgrcl |
|
36 |
35
|
simpld |
|
37 |
36
|
con3i |
|
38 |
37
|
eq0rdv |
|
39 |
38
|
xpeq2d |
|
40 |
|
xp0 |
|
41 |
39 40
|
eqtrdi |
|
42 |
|
ss0b |
|
43 |
41 42
|
sylibr |
|
44 |
34 43
|
sylan9ssr |
|
45 |
44
|
ex |
|
46 |
45
|
adantrd |
|
47 |
46
|
alrimiv |
|
48 |
|
sseq1 |
|
49 |
48
|
ralab2 |
|
50 |
47 49
|
sylibr |
|
51 |
|
unissb |
|
52 |
50 51
|
sylibr |
|
53 |
33 52
|
sstrid |
|
54 |
|
ss0 |
|
55 |
53 54
|
syl |
|
56 |
29 55
|
eqtr4d |
|
57 |
28 56
|
pm2.61i |
|
58 |
2 57
|
eqtri |
|