Metamath Proof Explorer


Theorem efhalfpi

Description: The exponential of _ipi / 2 is i . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion efhalfpi e i π 2 = i

Proof

Step Hyp Ref Expression
1 picn π
2 halfcl π π 2
3 efival π 2 e i π 2 = cos π 2 + i sin π 2
4 1 2 3 mp2b e i π 2 = cos π 2 + i sin π 2
5 coshalfpi cos π 2 = 0
6 sinhalfpi sin π 2 = 1
7 6 oveq2i i sin π 2 = i 1
8 ax-icn i
9 8 mulid1i i 1 = i
10 7 9 eqtri i sin π 2 = i
11 5 10 oveq12i cos π 2 + i sin π 2 = 0 + i
12 8 addid2i 0 + i = i
13 11 12 eqtri cos π 2 + i sin π 2 = i
14 4 13 eqtri e i π 2 = i