Metamath Proof Explorer


Theorem efiarg

Description: The exponential of the "arg" function Im o. log . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion efiarg A A 0 e i log A = A A

Proof

Step Hyp Ref Expression
1 logcl A A 0 log A
2 1 recld A A 0 log A
3 2 recnd A A 0 log A
4 efsub log A log A e log A log A = e log A e log A
5 1 3 4 syl2anc A A 0 e log A log A = e log A e log A
6 ax-icn i
7 1 imcld A A 0 log A
8 7 recnd A A 0 log A
9 mulcl i log A i log A
10 6 8 9 sylancr A A 0 i log A
11 1 replimd A A 0 log A = log A + i log A
12 3 10 11 mvrladdd A A 0 log A log A = i log A
13 12 fveq2d A A 0 e log A log A = e i log A
14 eflog A A 0 e log A = A
15 relog A A 0 log A = log A
16 15 fveq2d A A 0 e log A = e log A
17 abscl A A
18 17 adantr A A 0 A
19 18 recnd A A 0 A
20 absrpcl A A 0 A +
21 20 rpne0d A A 0 A 0
22 eflog A A 0 e log A = A
23 19 21 22 syl2anc A A 0 e log A = A
24 16 23 eqtrd A A 0 e log A = A
25 14 24 oveq12d A A 0 e log A e log A = A A
26 5 13 25 3eqtr3d A A 0 e i log A = A A