Metamath Proof Explorer


Theorem efiasin

Description: The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion efiasin A e i arcsin A = i A + 1 A 2

Proof

Step Hyp Ref Expression
1 asinval A arcsin A = i log i A + 1 A 2
2 1 oveq2d A i arcsin A = i i log i A + 1 A 2
3 ax-icn i
4 3 a1i A i
5 negicn i
6 5 a1i A i
7 mulcl i A i A
8 3 7 mpan A i A
9 ax-1cn 1
10 sqcl A A 2
11 subcl 1 A 2 1 A 2
12 9 10 11 sylancr A 1 A 2
13 12 sqrtcld A 1 A 2
14 8 13 addcld A i A + 1 A 2
15 asinlem A i A + 1 A 2 0
16 14 15 logcld A log i A + 1 A 2
17 4 6 16 mulassd A i i log i A + 1 A 2 = i i log i A + 1 A 2
18 3 3 mulneg2i i i = i i
19 ixi i i = 1
20 19 negeqi i i = -1
21 negneg1e1 -1 = 1
22 18 20 21 3eqtri i i = 1
23 22 oveq1i i i log i A + 1 A 2 = 1 log i A + 1 A 2
24 16 mulid2d A 1 log i A + 1 A 2 = log i A + 1 A 2
25 23 24 syl5eq A i i log i A + 1 A 2 = log i A + 1 A 2
26 2 17 25 3eqtr2d A i arcsin A = log i A + 1 A 2
27 26 fveq2d A e i arcsin A = e log i A + 1 A 2
28 eflog i A + 1 A 2 i A + 1 A 2 0 e log i A + 1 A 2 = i A + 1 A 2
29 14 15 28 syl2anc A e log i A + 1 A 2 = i A + 1 A 2
30 27 29 eqtrd A e i arcsin A = i A + 1 A 2