Metamath Proof Explorer


Theorem efiatan2

Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion efiatan2 A dom arctan e i arctan A = 1 + i A 1 + A 2

Proof

Step Hyp Ref Expression
1 ax-icn i
2 atancl A dom arctan arctan A
3 mulcl i arctan A i arctan A
4 1 2 3 sylancr A dom arctan i arctan A
5 efcl i arctan A e i arctan A
6 4 5 syl A dom arctan e i arctan A
7 ax-1cn 1
8 atandm2 A dom arctan A 1 i A 0 1 + i A 0
9 8 simp1bi A dom arctan A
10 9 sqcld A dom arctan A 2
11 addcl 1 A 2 1 + A 2
12 7 10 11 sylancr A dom arctan 1 + A 2
13 12 sqrtcld A dom arctan 1 + A 2
14 12 sqsqrtd A dom arctan 1 + A 2 2 = 1 + A 2
15 atandm4 A dom arctan A 1 + A 2 0
16 15 simprbi A dom arctan 1 + A 2 0
17 14 16 eqnetrd A dom arctan 1 + A 2 2 0
18 sqne0 1 + A 2 1 + A 2 2 0 1 + A 2 0
19 13 18 syl A dom arctan 1 + A 2 2 0 1 + A 2 0
20 17 19 mpbid A dom arctan 1 + A 2 0
21 6 13 20 divcan4d A dom arctan e i arctan A 1 + A 2 1 + A 2 = e i arctan A
22 halfcn 1 2
23 12 16 logcld A dom arctan log 1 + A 2
24 mulcl 1 2 log 1 + A 2 1 2 log 1 + A 2
25 22 23 24 sylancr A dom arctan 1 2 log 1 + A 2
26 efadd i arctan A 1 2 log 1 + A 2 e i arctan A + 1 2 log 1 + A 2 = e i arctan A e 1 2 log 1 + A 2
27 4 25 26 syl2anc A dom arctan e i arctan A + 1 2 log 1 + A 2 = e i arctan A e 1 2 log 1 + A 2
28 2cn 2
29 28 a1i A dom arctan 2
30 mulcl i A i A
31 1 9 30 sylancr A dom arctan i A
32 addcl 1 i A 1 + i A
33 7 31 32 sylancr A dom arctan 1 + i A
34 8 simp3bi A dom arctan 1 + i A 0
35 33 34 logcld A dom arctan log 1 + i A
36 29 35 4 subdid A dom arctan 2 log 1 + i A i arctan A = 2 log 1 + i A 2 i arctan A
37 atanval A dom arctan arctan A = i 2 log 1 i A log 1 + i A
38 37 oveq2d A dom arctan 2 i arctan A = 2 i i 2 log 1 i A log 1 + i A
39 1 a1i A dom arctan i
40 29 39 2 mulassd A dom arctan 2 i arctan A = 2 i arctan A
41 halfcl i i 2
42 1 41 ax-mp i 2
43 28 1 42 mulassi 2 i i 2 = 2 i i 2
44 28 1 42 mul12i 2 i i 2 = i 2 i 2
45 2ne0 2 0
46 1 28 45 divcan2i 2 i 2 = i
47 46 oveq2i i 2 i 2 = i i
48 ixi i i = 1
49 47 48 eqtri i 2 i 2 = 1
50 43 44 49 3eqtri 2 i i 2 = 1
51 50 oveq1i 2 i i 2 log 1 i A log 1 + i A = -1 log 1 i A log 1 + i A
52 subcl 1 i A 1 i A
53 7 31 52 sylancr A dom arctan 1 i A
54 8 simp2bi A dom arctan 1 i A 0
55 53 54 logcld A dom arctan log 1 i A
56 55 35 subcld A dom arctan log 1 i A log 1 + i A
57 56 mulm1d A dom arctan -1 log 1 i A log 1 + i A = log 1 i A log 1 + i A
58 51 57 syl5eq A dom arctan 2 i i 2 log 1 i A log 1 + i A = log 1 i A log 1 + i A
59 2mulicn 2 i
60 59 a1i A dom arctan 2 i
61 42 a1i A dom arctan i 2
62 60 61 56 mulassd A dom arctan 2 i i 2 log 1 i A log 1 + i A = 2 i i 2 log 1 i A log 1 + i A
63 55 35 negsubdi2d A dom arctan log 1 i A log 1 + i A = log 1 + i A log 1 i A
64 58 62 63 3eqtr3d A dom arctan 2 i i 2 log 1 i A log 1 + i A = log 1 + i A log 1 i A
65 38 40 64 3eqtr3d A dom arctan 2 i arctan A = log 1 + i A log 1 i A
66 65 oveq2d A dom arctan 2 log 1 + i A 2 i arctan A = 2 log 1 + i A log 1 + i A log 1 i A
67 mulcl 2 log 1 + i A 2 log 1 + i A
68 28 35 67 sylancr A dom arctan 2 log 1 + i A
69 68 35 55 subsubd A dom arctan 2 log 1 + i A log 1 + i A log 1 i A = 2 log 1 + i A - log 1 + i A + log 1 i A
70 35 2timesd A dom arctan 2 log 1 + i A = log 1 + i A + log 1 + i A
71 35 35 70 mvrladdd A dom arctan 2 log 1 + i A log 1 + i A = log 1 + i A
72 71 oveq1d A dom arctan 2 log 1 + i A - log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
73 atanlogadd A dom arctan log 1 + i A + log 1 i A ran log
74 logef log 1 + i A + log 1 i A ran log log e log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
75 73 74 syl A dom arctan log e log 1 + i A + log 1 i A = log 1 + i A + log 1 i A
76 efadd log 1 + i A log 1 i A e log 1 + i A + log 1 i A = e log 1 + i A e log 1 i A
77 35 55 76 syl2anc A dom arctan e log 1 + i A + log 1 i A = e log 1 + i A e log 1 i A
78 eflog 1 + i A 1 + i A 0 e log 1 + i A = 1 + i A
79 33 34 78 syl2anc A dom arctan e log 1 + i A = 1 + i A
80 eflog 1 i A 1 i A 0 e log 1 i A = 1 i A
81 53 54 80 syl2anc A dom arctan e log 1 i A = 1 i A
82 79 81 oveq12d A dom arctan e log 1 + i A e log 1 i A = 1 + i A 1 i A
83 sq1 1 2 = 1
84 83 a1i A dom arctan 1 2 = 1
85 sqmul i A i A 2 = i 2 A 2
86 1 9 85 sylancr A dom arctan i A 2 = i 2 A 2
87 i2 i 2 = 1
88 87 oveq1i i 2 A 2 = -1 A 2
89 10 mulm1d A dom arctan -1 A 2 = A 2
90 88 89 syl5eq A dom arctan i 2 A 2 = A 2
91 86 90 eqtrd A dom arctan i A 2 = A 2
92 84 91 oveq12d A dom arctan 1 2 i A 2 = 1 A 2
93 subsq 1 i A 1 2 i A 2 = 1 + i A 1 i A
94 7 31 93 sylancr A dom arctan 1 2 i A 2 = 1 + i A 1 i A
95 subneg 1 A 2 1 A 2 = 1 + A 2
96 7 10 95 sylancr A dom arctan 1 A 2 = 1 + A 2
97 92 94 96 3eqtr3d A dom arctan 1 + i A 1 i A = 1 + A 2
98 77 82 97 3eqtrd A dom arctan e log 1 + i A + log 1 i A = 1 + A 2
99 98 fveq2d A dom arctan log e log 1 + i A + log 1 i A = log 1 + A 2
100 75 99 eqtr3d A dom arctan log 1 + i A + log 1 i A = log 1 + A 2
101 69 72 100 3eqtrd A dom arctan 2 log 1 + i A log 1 + i A log 1 i A = log 1 + A 2
102 36 66 101 3eqtrd A dom arctan 2 log 1 + i A i arctan A = log 1 + A 2
103 102 oveq1d A dom arctan 2 log 1 + i A i arctan A 2 = log 1 + A 2 2
104 35 4 subcld A dom arctan log 1 + i A i arctan A
105 45 a1i A dom arctan 2 0
106 104 29 105 divcan3d A dom arctan 2 log 1 + i A i arctan A 2 = log 1 + i A i arctan A
107 23 29 105 divrec2d A dom arctan log 1 + A 2 2 = 1 2 log 1 + A 2
108 103 106 107 3eqtr3d A dom arctan log 1 + i A i arctan A = 1 2 log 1 + A 2
109 35 4 25 subaddd A dom arctan log 1 + i A i arctan A = 1 2 log 1 + A 2 i arctan A + 1 2 log 1 + A 2 = log 1 + i A
110 108 109 mpbid A dom arctan i arctan A + 1 2 log 1 + A 2 = log 1 + i A
111 110 fveq2d A dom arctan e i arctan A + 1 2 log 1 + A 2 = e log 1 + i A
112 27 111 eqtr3d A dom arctan e i arctan A e 1 2 log 1 + A 2 = e log 1 + i A
113 22 a1i A dom arctan 1 2
114 12 16 113 cxpefd A dom arctan 1 + A 2 1 2 = e 1 2 log 1 + A 2
115 cxpsqrt 1 + A 2 1 + A 2 1 2 = 1 + A 2
116 12 115 syl A dom arctan 1 + A 2 1 2 = 1 + A 2
117 114 116 eqtr3d A dom arctan e 1 2 log 1 + A 2 = 1 + A 2
118 117 oveq2d A dom arctan e i arctan A e 1 2 log 1 + A 2 = e i arctan A 1 + A 2
119 112 118 79 3eqtr3d A dom arctan e i arctan A 1 + A 2 = 1 + i A
120 119 oveq1d A dom arctan e i arctan A 1 + A 2 1 + A 2 = 1 + i A 1 + A 2
121 21 120 eqtr3d A dom arctan e i arctan A = 1 + i A 1 + A 2