Metamath Proof Explorer


Theorem efieq

Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion efieq A B e i A = e i B cos A = cos B sin A = sin B

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 efival A e i A = cos A + i sin A
4 efival B e i B = cos B + i sin B
5 3 4 eqeqan12d A B e i A = e i B cos A + i sin A = cos B + i sin B
6 1 2 5 syl2an A B e i A = e i B cos A + i sin A = cos B + i sin B
7 recoscl A cos A
8 resincl A sin A
9 7 8 jca A cos A sin A
10 recoscl B cos B
11 resincl B sin B
12 10 11 jca B cos B sin B
13 cru cos A sin A cos B sin B cos A + i sin A = cos B + i sin B cos A = cos B sin A = sin B
14 9 12 13 syl2an A B cos A + i sin A = cos B + i sin B cos A = cos B sin A = sin B
15 6 14 bitrd A B e i A = e i B cos A = cos B sin A = sin B