Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
|
2 |
1
|
oveq2d |
|
3 |
|
ax-icn |
|
4 |
|
recl |
|
5 |
4
|
recnd |
|
6 |
|
imcl |
|
7 |
6
|
recnd |
|
8 |
|
mulcl |
|
9 |
3 7 8
|
sylancr |
|
10 |
|
adddi |
|
11 |
3 5 9 10
|
mp3an2i |
|
12 |
|
ixi |
|
13 |
12
|
oveq1i |
|
14 |
|
mulass |
|
15 |
3 3 7 14
|
mp3an12i |
|
16 |
7
|
mulm1d |
|
17 |
13 15 16
|
3eqtr3a |
|
18 |
17
|
oveq2d |
|
19 |
11 18
|
eqtrd |
|
20 |
2 19
|
eqtrd |
|
21 |
20
|
fveq2d |
|
22 |
|
mulcl |
|
23 |
3 5 22
|
sylancr |
|
24 |
6
|
renegcld |
|
25 |
24
|
recnd |
|
26 |
|
efadd |
|
27 |
23 25 26
|
syl2anc |
|
28 |
21 27
|
eqtrd |
|
29 |
28
|
eqeq1d |
|
30 |
|
efcl |
|
31 |
23 30
|
syl |
|
32 |
|
efcl |
|
33 |
25 32
|
syl |
|
34 |
31 33
|
absmuld |
|
35 |
|
absefi |
|
36 |
4 35
|
syl |
|
37 |
24
|
reefcld |
|
38 |
|
efgt0 |
|
39 |
24 38
|
syl |
|
40 |
|
0re |
|
41 |
|
ltle |
|
42 |
40 41
|
mpan |
|
43 |
37 39 42
|
sylc |
|
44 |
37 43
|
absidd |
|
45 |
36 44
|
oveq12d |
|
46 |
33
|
mulid2d |
|
47 |
34 45 46
|
3eqtrrd |
|
48 |
|
fveq2 |
|
49 |
47 48
|
sylan9eq |
|
50 |
49
|
ex |
|
51 |
29 50
|
sylbid |
|
52 |
7
|
negeq0d |
|
53 |
|
reim0b |
|
54 |
|
ef0 |
|
55 |
|
abs1 |
|
56 |
54 55
|
eqtr4i |
|
57 |
56
|
eqeq2i |
|
58 |
|
reef11 |
|
59 |
24 40 58
|
sylancl |
|
60 |
57 59
|
bitr3id |
|
61 |
52 53 60
|
3bitr4rd |
|
62 |
51 61
|
sylibd |
|
63 |
62
|
imp |
|