Metamath Proof Explorer


Theorem efif1o

Description: The exponential function of an imaginary number maps any open-below, closed-above interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efif1o.1 F = w D e i w
efif1o.2 C = abs -1 1
efif1o.3 D = A A + 2 π
Assertion efif1o A F : D 1-1 onto C

Proof

Step Hyp Ref Expression
1 efif1o.1 F = w D e i w
2 efif1o.2 C = abs -1 1
3 efif1o.3 D = A A + 2 π
4 rexr A A *
5 2re 2
6 pire π
7 5 6 remulcli 2 π
8 readdcl A 2 π A + 2 π
9 7 8 mpan2 A A + 2 π
10 elioc2 A * A + 2 π x A A + 2 π x A < x x A + 2 π
11 4 9 10 syl2anc A x A A + 2 π x A < x x A + 2 π
12 simp1 x A < x x A + 2 π x
13 11 12 syl6bi A x A A + 2 π x
14 13 ssrdv A A A + 2 π
15 3 14 eqsstrid A D
16 3 efif1olem1 A x D y D x y < 2 π
17 3 efif1olem2 A z y D z y 2 π
18 eqid sin π 2 π 2 = sin π 2 π 2
19 1 2 15 16 17 18 efif1olem4 A F : D 1-1 onto C