Step |
Hyp |
Ref |
Expression |
1 |
|
efif1olem1.1 |
|
2 |
|
simpl |
|
3 |
|
2re |
|
4 |
|
pire |
|
5 |
3 4
|
remulcli |
|
6 |
|
readdcl |
|
7 |
2 5 6
|
sylancl |
|
8 |
|
resubcl |
|
9 |
|
2pos |
|
10 |
|
pipos |
|
11 |
3 4 9 10
|
mulgt0ii |
|
12 |
5 11
|
elrpii |
|
13 |
|
modcl |
|
14 |
8 12 13
|
sylancl |
|
15 |
7 14
|
resubcld |
|
16 |
5
|
a1i |
|
17 |
|
modlt |
|
18 |
8 12 17
|
sylancl |
|
19 |
14 16 2 18
|
ltadd2dd |
|
20 |
2 14 7
|
ltaddsubd |
|
21 |
19 20
|
mpbid |
|
22 |
|
modge0 |
|
23 |
8 12 22
|
sylancl |
|
24 |
7 14
|
subge02d |
|
25 |
23 24
|
mpbid |
|
26 |
|
rexr |
|
27 |
|
elioc2 |
|
28 |
26 7 27
|
syl2an2r |
|
29 |
15 21 25 28
|
mpbir3and |
|
30 |
29 1
|
eleqtrrdi |
|
31 |
|
modval |
|
32 |
8 12 31
|
sylancl |
|
33 |
32
|
oveq2d |
|
34 |
7
|
recnd |
|
35 |
8
|
recnd |
|
36 |
5 11
|
gt0ne0ii |
|
37 |
|
redivcl |
|
38 |
5 36 37
|
mp3an23 |
|
39 |
8 38
|
syl |
|
40 |
39
|
flcld |
|
41 |
40
|
zred |
|
42 |
|
remulcl |
|
43 |
5 41 42
|
sylancr |
|
44 |
43
|
recnd |
|
45 |
34 35 44
|
subsubd |
|
46 |
2
|
recnd |
|
47 |
5
|
recni |
|
48 |
47
|
a1i |
|
49 |
|
simpr |
|
50 |
49
|
recnd |
|
51 |
46 48 50
|
pnncand |
|
52 |
51
|
oveq1d |
|
53 |
33 45 52
|
3eqtrd |
|
54 |
53
|
oveq2d |
|
55 |
|
addcl |
|
56 |
47 50 55
|
sylancr |
|
57 |
50 56 44
|
subsub4d |
|
58 |
56 50
|
negsubdi2d |
|
59 |
48 50
|
pncand |
|
60 |
59
|
negeqd |
|
61 |
58 60
|
eqtr3d |
|
62 |
|
neg1cn |
|
63 |
47
|
mulm1i |
|
64 |
62 47 63
|
mulcomli |
|
65 |
61 64
|
eqtr4di |
|
66 |
65
|
oveq1d |
|
67 |
62
|
a1i |
|
68 |
40
|
zcnd |
|
69 |
48 67 68
|
subdid |
|
70 |
66 69
|
eqtr4d |
|
71 |
54 57 70
|
3eqtr2d |
|
72 |
71
|
oveq1d |
|
73 |
|
neg1z |
|
74 |
|
zsubcl |
|
75 |
73 40 74
|
sylancr |
|
76 |
75
|
zcnd |
|
77 |
|
divcan3 |
|
78 |
47 36 77
|
mp3an23 |
|
79 |
76 78
|
syl |
|
80 |
72 79
|
eqtrd |
|
81 |
80 75
|
eqeltrd |
|
82 |
|
oveq2 |
|
83 |
82
|
oveq1d |
|
84 |
83
|
eleq1d |
|
85 |
84
|
rspcev |
|
86 |
30 81 85
|
syl2anc |
|