Step |
Hyp |
Ref |
Expression |
1 |
|
efif1o.1 |
|
2 |
|
efif1o.2 |
|
3 |
|
simpr |
|
4 |
3 2
|
eleqtrdi |
|
5 |
|
absf |
|
6 |
|
ffn |
|
7 |
|
fniniseg |
|
8 |
5 6 7
|
mp2b |
|
9 |
4 8
|
sylib |
|
10 |
9
|
simpld |
|
11 |
10
|
sqrtcld |
|
12 |
11
|
imcld |
|
13 |
|
absimle |
|
14 |
11 13
|
syl |
|
15 |
10
|
sqsqrtd |
|
16 |
15
|
fveq2d |
|
17 |
|
2nn0 |
|
18 |
|
absexp |
|
19 |
11 17 18
|
sylancl |
|
20 |
9
|
simprd |
|
21 |
16 19 20
|
3eqtr3d |
|
22 |
|
sq1 |
|
23 |
21 22
|
eqtr4di |
|
24 |
11
|
abscld |
|
25 |
11
|
absge0d |
|
26 |
|
1re |
|
27 |
|
0le1 |
|
28 |
|
sq11 |
|
29 |
26 27 28
|
mpanr12 |
|
30 |
24 25 29
|
syl2anc |
|
31 |
23 30
|
mpbid |
|
32 |
14 31
|
breqtrd |
|
33 |
|
absle |
|
34 |
12 26 33
|
sylancl |
|
35 |
32 34
|
mpbid |
|
36 |
35
|
simpld |
|
37 |
35
|
simprd |
|
38 |
|
neg1rr |
|
39 |
38 26
|
elicc2i |
|
40 |
12 36 37 39
|
syl3anbrc |
|