| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efif1o.1 |
|
| 2 |
|
efif1o.2 |
|
| 3 |
|
simpr |
|
| 4 |
3 2
|
eleqtrdi |
|
| 5 |
|
absf |
|
| 6 |
|
ffn |
|
| 7 |
|
fniniseg |
|
| 8 |
5 6 7
|
mp2b |
|
| 9 |
4 8
|
sylib |
|
| 10 |
9
|
simpld |
|
| 11 |
10
|
sqrtcld |
|
| 12 |
11
|
imcld |
|
| 13 |
|
absimle |
|
| 14 |
11 13
|
syl |
|
| 15 |
10
|
sqsqrtd |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
2nn0 |
|
| 18 |
|
absexp |
|
| 19 |
11 17 18
|
sylancl |
|
| 20 |
9
|
simprd |
|
| 21 |
16 19 20
|
3eqtr3d |
|
| 22 |
|
sq1 |
|
| 23 |
21 22
|
eqtr4di |
|
| 24 |
11
|
abscld |
|
| 25 |
11
|
absge0d |
|
| 26 |
|
1re |
|
| 27 |
|
0le1 |
|
| 28 |
|
sq11 |
|
| 29 |
26 27 28
|
mpanr12 |
|
| 30 |
24 25 29
|
syl2anc |
|
| 31 |
23 30
|
mpbid |
|
| 32 |
14 31
|
breqtrd |
|
| 33 |
|
absle |
|
| 34 |
12 26 33
|
sylancl |
|
| 35 |
32 34
|
mpbid |
|
| 36 |
35
|
simpld |
|
| 37 |
35
|
simprd |
|
| 38 |
|
neg1rr |
|
| 39 |
38 26
|
elicc2i |
|
| 40 |
12 36 37 39
|
syl3anbrc |
|