Metamath Proof Explorer


Theorem efifo

Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efifo.1 F = z e i z
efifo.2 C = abs -1 1
Assertion efifo F : onto C

Proof

Step Hyp Ref Expression
1 efifo.1 F = z e i z
2 efifo.2 C = abs -1 1
3 ax-icn i
4 recn z z
5 mulcl i z i z
6 3 4 5 sylancr z i z
7 efcl i z e i z
8 6 7 syl z e i z
9 absefi z e i z = 1
10 absf abs :
11 ffn abs : abs Fn
12 fniniseg abs Fn e i z abs -1 1 e i z e i z = 1
13 10 11 12 mp2b e i z abs -1 1 e i z e i z = 1
14 8 9 13 sylanbrc z e i z abs -1 1
15 14 2 eleqtrrdi z e i z C
16 1 15 fmpti F : C
17 ffn F : C F Fn
18 16 17 ax-mp F Fn
19 frn F : C ran F C
20 16 19 ax-mp ran F C
21 df-ima F 0 2 π = ran F 0 2 π
22 1 reseq1i F 0 2 π = z e i z 0 2 π
23 0xr 0 *
24 2re 2
25 pire π
26 24 25 remulcli 2 π
27 elioc2 0 * 2 π z 0 2 π z 0 < z z 2 π
28 23 26 27 mp2an z 0 2 π z 0 < z z 2 π
29 28 simp1bi z 0 2 π z
30 29 ssriv 0 2 π
31 resmpt 0 2 π z e i z 0 2 π = z 0 2 π e i z
32 30 31 ax-mp z e i z 0 2 π = z 0 2 π e i z
33 22 32 eqtri F 0 2 π = z 0 2 π e i z
34 33 rneqi ran F 0 2 π = ran z 0 2 π e i z
35 0re 0
36 eqid z 0 2 π e i z = z 0 2 π e i z
37 26 recni 2 π
38 37 addid2i 0 + 2 π = 2 π
39 38 oveq2i 0 0 + 2 π = 0 2 π
40 39 eqcomi 0 2 π = 0 0 + 2 π
41 36 2 40 efif1o 0 z 0 2 π e i z : 0 2 π 1-1 onto C
42 35 41 ax-mp z 0 2 π e i z : 0 2 π 1-1 onto C
43 f1ofo z 0 2 π e i z : 0 2 π 1-1 onto C z 0 2 π e i z : 0 2 π onto C
44 forn z 0 2 π e i z : 0 2 π onto C ran z 0 2 π e i z = C
45 42 43 44 mp2b ran z 0 2 π e i z = C
46 34 45 eqtri ran F 0 2 π = C
47 21 46 eqtri F 0 2 π = C
48 imassrn F 0 2 π ran F
49 47 48 eqsstrri C ran F
50 20 49 eqssi ran F = C
51 df-fo F : onto C F Fn ran F = C
52 18 50 51 mpbir2an F : onto C