Metamath Proof Explorer


Theorem efipi

Description: The exponential of _i x. _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion efipi e i π = 1

Proof

Step Hyp Ref Expression
1 picn π
2 efival π e i π = cos π + i sin π
3 1 2 ax-mp e i π = cos π + i sin π
4 cospi cos π = 1
5 sinpi sin π = 0
6 5 oveq2i i sin π = i 0
7 it0e0 i 0 = 0
8 6 7 eqtri i sin π = 0
9 4 8 oveq12i cos π + i sin π = - 1 + 0
10 neg1cn 1
11 10 addid1i - 1 + 0 = 1
12 9 11 eqtri cos π + i sin π = 1
13 3 12 eqtri e i π = 1