Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|
2 |
|
mulcl |
|
3 |
1 2
|
mpan |
|
4 |
|
efcl |
|
5 |
3 4
|
syl |
|
6 |
|
negicn |
|
7 |
|
mulcl |
|
8 |
6 7
|
mpan |
|
9 |
|
efcl |
|
10 |
8 9
|
syl |
|
11 |
5 10
|
addcld |
|
12 |
5 10
|
subcld |
|
13 |
|
2cn |
|
14 |
|
2ne0 |
|
15 |
13 14
|
pm3.2i |
|
16 |
|
divdir |
|
17 |
15 16
|
mp3an3 |
|
18 |
11 12 17
|
syl2anc |
|
19 |
10 5
|
pncan3d |
|
20 |
19
|
oveq2d |
|
21 |
5 10 12
|
addassd |
|
22 |
5
|
2timesd |
|
23 |
20 21 22
|
3eqtr4d |
|
24 |
23
|
oveq1d |
|
25 |
|
divcan3 |
|
26 |
13 14 25
|
mp3an23 |
|
27 |
5 26
|
syl |
|
28 |
24 27
|
eqtr2d |
|
29 |
|
cosval |
|
30 |
|
2mulicn |
|
31 |
|
2muline0 |
|
32 |
30 31
|
pm3.2i |
|
33 |
|
div12 |
|
34 |
1 32 33
|
mp3an13 |
|
35 |
12 34
|
syl |
|
36 |
|
sinval |
|
37 |
36
|
oveq2d |
|
38 |
|
divrec |
|
39 |
13 14 38
|
mp3an23 |
|
40 |
12 39
|
syl |
|
41 |
1
|
mulid2i |
|
42 |
41
|
oveq1i |
|
43 |
|
ine0 |
|
44 |
1 43
|
dividi |
|
45 |
44
|
oveq2i |
|
46 |
|
ax-1cn |
|
47 |
46 13 1 1 14 43
|
divmuldivi |
|
48 |
45 47
|
eqtr3i |
|
49 |
|
halfcn |
|
50 |
49
|
mulid1i |
|
51 |
48 50
|
eqtr3i |
|
52 |
42 51
|
eqtr3i |
|
53 |
52
|
oveq2i |
|
54 |
40 53
|
eqtr4di |
|
55 |
35 37 54
|
3eqtr4d |
|
56 |
29 55
|
oveq12d |
|
57 |
18 28 56
|
3eqtr4d |
|