Metamath Proof Explorer


Theorem efle

Description: The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion efle A B A B e A e B

Proof

Step Hyp Ref Expression
1 eflt B A B < A e B < e A
2 1 ancoms A B B < A e B < e A
3 2 notbid A B ¬ B < A ¬ e B < e A
4 lenlt A B A B ¬ B < A
5 reefcl A e A
6 reefcl B e B
7 lenlt e A e B e A e B ¬ e B < e A
8 5 6 7 syl2an A B e A e B ¬ e B < e A
9 3 4 8 3bitr4d A B A B e A e B