Metamath Proof Explorer


Theorem eflegeo

Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007)

Ref Expression
Hypotheses eflegeo.1 φ A
eflegeo.2 φ 0 A
eflegeo.3 φ A < 1
Assertion eflegeo φ e A 1 1 A

Proof

Step Hyp Ref Expression
1 eflegeo.1 φ A
2 eflegeo.2 φ 0 A
3 eflegeo.3 φ A < 1
4 nn0uz 0 = 0
5 0zd φ 0
6 eqid n 0 A n n ! = n 0 A n n !
7 6 eftval k 0 n 0 A n n ! k = A k k !
8 7 adantl φ k 0 n 0 A n n ! k = A k k !
9 reeftcl A k 0 A k k !
10 1 9 sylan φ k 0 A k k !
11 oveq2 n = k A n = A k
12 eqid n 0 A n = n 0 A n
13 ovex A k V
14 11 12 13 fvmpt k 0 n 0 A n k = A k
15 14 adantl φ k 0 n 0 A n k = A k
16 reexpcl A k 0 A k
17 1 16 sylan φ k 0 A k
18 faccl k 0 k !
19 18 adantl φ k 0 k !
20 19 nnred φ k 0 k !
21 1 adantr φ k 0 A
22 simpr φ k 0 k 0
23 2 adantr φ k 0 0 A
24 21 22 23 expge0d φ k 0 0 A k
25 19 nnge1d φ k 0 1 k !
26 17 20 24 25 lemulge12d φ k 0 A k k ! A k
27 19 nngt0d φ k 0 0 < k !
28 ledivmul A k A k k ! 0 < k ! A k k ! A k A k k ! A k
29 17 17 20 27 28 syl112anc φ k 0 A k k ! A k A k k ! A k
30 26 29 mpbird φ k 0 A k k ! A k
31 1 recnd φ A
32 6 efcllem A seq 0 + n 0 A n n ! dom
33 31 32 syl φ seq 0 + n 0 A n n ! dom
34 1 2 absidd φ A = A
35 34 3 eqbrtrd φ A < 1
36 31 35 15 geolim φ seq 0 + n 0 A n 1 1 A
37 seqex seq 0 + n 0 A n V
38 ovex 1 1 A V
39 37 38 breldm seq 0 + n 0 A n 1 1 A seq 0 + n 0 A n dom
40 36 39 syl φ seq 0 + n 0 A n dom
41 4 5 8 10 15 17 30 33 40 isumle φ k 0 A k k ! k 0 A k
42 efval A e A = k 0 A k k !
43 31 42 syl φ e A = k 0 A k k !
44 expcl A k 0 A k
45 31 44 sylan φ k 0 A k
46 4 5 15 45 36 isumclim φ k 0 A k = 1 1 A
47 46 eqcomd φ 1 1 A = k 0 A k
48 41 43 47 3brtr4d φ e A 1 1 A