| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efcl |
|
| 2 |
|
efne0 |
|
| 3 |
1 2
|
logcld |
|
| 4 |
|
efsub |
|
| 5 |
3 4
|
mpdan |
|
| 6 |
|
eflog |
|
| 7 |
1 2 6
|
syl2anc |
|
| 8 |
7
|
oveq2d |
|
| 9 |
1 2
|
dividd |
|
| 10 |
5 8 9
|
3eqtrd |
|
| 11 |
|
subcl |
|
| 12 |
3 11
|
mpdan |
|
| 13 |
|
efeq1 |
|
| 14 |
12 13
|
syl |
|
| 15 |
10 14
|
mpbid |
|
| 16 |
|
ax-icn |
|
| 17 |
|
2cn |
|
| 18 |
|
picn |
|
| 19 |
17 18
|
mulcli |
|
| 20 |
16 19
|
mulcli |
|
| 21 |
20
|
a1i |
|
| 22 |
|
ine0 |
|
| 23 |
|
2ne0 |
|
| 24 |
|
pire |
|
| 25 |
|
pipos |
|
| 26 |
24 25
|
gt0ne0ii |
|
| 27 |
17 18 23 26
|
mulne0i |
|
| 28 |
16 19 22 27
|
mulne0i |
|
| 29 |
28
|
a1i |
|
| 30 |
12 21 29
|
divcan2d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
|
pncan3 |
|
| 33 |
3 32
|
mpancom |
|
| 34 |
31 33
|
eqtr2d |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
rspceeqv |
|
| 38 |
15 34 37
|
syl2anc |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
oveq1d |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
42
|
rexbidv |
|
| 44 |
39 43
|
syl5ibcom |
|
| 45 |
|
logcl |
|
| 46 |
45
|
3adant1 |
|
| 47 |
|
zcn |
|
| 48 |
47
|
adantl |
|
| 49 |
|
mulcl |
|
| 50 |
20 48 49
|
sylancr |
|
| 51 |
|
efadd |
|
| 52 |
46 50 51
|
syl2an2r |
|
| 53 |
|
eflog |
|
| 54 |
53
|
3adant1 |
|
| 55 |
|
ef2kpi |
|
| 56 |
54 55
|
oveqan12d |
|
| 57 |
|
simpl2 |
|
| 58 |
57
|
mulridd |
|
| 59 |
52 56 58
|
3eqtrd |
|
| 60 |
|
fveqeq2 |
|
| 61 |
59 60
|
syl5ibrcom |
|
| 62 |
61
|
rexlimdva |
|
| 63 |
44 62
|
impbid |
|