Metamath Proof Explorer


Theorem efmival

Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006)

Ref Expression
Assertion efmival A e i A = cos A i sin A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulneg12 i A i A = i A
3 1 2 mpan A i A = i A
4 3 fveq2d A e i A = e i A
5 negcl A A
6 efival A e i A = cos A + i sin A
7 5 6 syl A e i A = cos A + i sin A
8 cosneg A cos A = cos A
9 sinneg A sin A = sin A
10 9 oveq2d A i sin A = i sin A
11 sincl A sin A
12 mulneg2 i sin A i sin A = i sin A
13 1 11 12 sylancr A i sin A = i sin A
14 10 13 eqtrd A i sin A = i sin A
15 8 14 oveq12d A cos A + i sin A = cos A + i sin A
16 coscl A cos A
17 mulcl i sin A i sin A
18 1 11 17 sylancr A i sin A
19 16 18 negsubd A cos A + i sin A = cos A i sin A
20 15 19 eqtrd A cos A + i sin A = cos A i sin A
21 7 20 eqtrd A e i A = cos A i sin A
22 4 21 eqtrd A e i A = cos A i sin A