Metamath Proof Explorer


Theorem efmnd

Description: The monoid of endofunctions on set A . (Contributed by AV, 25-Jan-2024)

Ref Expression
Hypotheses efmnd.1 No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmnd.2 B = A A
efmnd.3 + ˙ = f B , g B f g
efmnd.4 J = 𝑡 A × 𝒫 A
Assertion efmnd A V G = Base ndx B + ndx + ˙ TopSet ndx J

Proof

Step Hyp Ref Expression
1 efmnd.1 Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmnd.2 B = A A
3 efmnd.3 + ˙ = f B , g B f g
4 efmnd.4 J = 𝑡 A × 𝒫 A
5 elex A V A V
6 ovexd a = A a a V
7 id b = a a b = a a
8 id a = A a = A
9 8 8 oveq12d a = A a a = A A
10 9 2 eqtr4di a = A a a = B
11 7 10 sylan9eqr a = A b = a a b = B
12 11 opeq2d a = A b = a a Base ndx b = Base ndx B
13 eqidd a = A b = a a f g = f g
14 11 11 13 mpoeq123dv a = A b = a a f b , g b f g = f B , g B f g
15 14 3 eqtr4di a = A b = a a f b , g b f g = + ˙
16 15 opeq2d a = A b = a a + ndx f b , g b f g = + ndx + ˙
17 simpl a = A b = a a a = A
18 pweq a = A 𝒫 a = 𝒫 A
19 18 sneqd a = A 𝒫 a = 𝒫 A
20 19 adantr a = A b = a a 𝒫 a = 𝒫 A
21 17 20 xpeq12d a = A b = a a a × 𝒫 a = A × 𝒫 A
22 21 fveq2d a = A b = a a 𝑡 a × 𝒫 a = 𝑡 A × 𝒫 A
23 22 4 eqtr4di a = A b = a a 𝑡 a × 𝒫 a = J
24 23 opeq2d a = A b = a a TopSet ndx 𝑡 a × 𝒫 a = TopSet ndx J
25 12 16 24 tpeq123d a = A b = a a Base ndx b + ndx f b , g b f g TopSet ndx 𝑡 a × 𝒫 a = Base ndx B + ndx + ˙ TopSet ndx J
26 6 25 csbied a = A a a / b Base ndx b + ndx f b , g b f g TopSet ndx 𝑡 a × 𝒫 a = Base ndx B + ndx + ˙ TopSet ndx J
27 df-efmnd Could not format EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) : No typesetting found for |- EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) with typecode |-
28 tpex Base ndx B + ndx + ˙ TopSet ndx J V
29 26 27 28 fvmpt Could not format ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) : No typesetting found for |- ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) with typecode |-
30 5 29 syl Could not format ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) : No typesetting found for |- ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) with typecode |-
31 1 30 eqtrid A V G = Base ndx B + ndx + ˙ TopSet ndx J