Metamath Proof Explorer


Theorem efmnd0nmnd

Description: Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024)

Ref Expression
Assertion efmnd0nmnd Could not format assertion : No typesetting found for |- ( EndoFMnd ` (/) ) e. Mnd with typecode |-

Proof

Step Hyp Ref Expression
1 0ex V
2 eqid Could not format ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) : No typesetting found for |- ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) with typecode |-
3 2 efmndmnd Could not format ( (/) e. _V -> ( EndoFMnd ` (/) ) e. Mnd ) : No typesetting found for |- ( (/) e. _V -> ( EndoFMnd ` (/) ) e. Mnd ) with typecode |-
4 1 3 ax-mp Could not format ( EndoFMnd ` (/) ) e. Mnd : No typesetting found for |- ( EndoFMnd ` (/) ) e. Mnd with typecode |-