Metamath Proof Explorer


Theorem efmnd0nmnd

Description: Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024)

Ref Expression
Assertion efmnd0nmnd EndoFMnd Mnd

Proof

Step Hyp Ref Expression
1 0ex V
2 eqid EndoFMnd = EndoFMnd
3 2 efmndmnd V EndoFMnd Mnd
4 1 3 ax-mp EndoFMnd Mnd