Metamath Proof Explorer


Theorem efmnd2hash

Description: The monoid of endofunctions on a (proper) pair has cardinality 4 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses efmnd1bas.1 No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmnd1bas.2 B = Base G
efmnd2bas.0 A = I J
Assertion efmnd2hash I V J W I J B = 4

Proof

Step Hyp Ref Expression
1 efmnd1bas.1 Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmnd1bas.2 B = Base G
3 efmnd2bas.0 A = I J
4 prfi I J Fin
5 3 4 eqeltri A Fin
6 1 2 efmndhash A Fin B = A A
7 5 6 ax-mp B = A A
8 3 fveq2i A = I J
9 elex I V I V
10 elex J W J V
11 id I J I J
12 9 10 11 3anim123i I V J W I J I V J V I J
13 hashprb I V J V I J I J = 2
14 12 13 sylib I V J W I J I J = 2
15 8 14 eqtrid I V J W I J A = 2
16 15 15 oveq12d I V J W I J A A = 2 2
17 sq2 2 2 = 4
18 16 17 eqtrdi I V J W I J A A = 4
19 7 18 eqtrid I V J W I J B = 4