Metamath Proof Explorer


Theorem efmndbas

Description: The base set of the monoid of endofunctions on class A . (Contributed by AV, 25-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B = Base G
Assertion efmndbas B = A A

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B = Base G
3 ovex A A V
4 eqid Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A = Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A
5 4 topgrpbas A A V A A = Base Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A
6 3 5 mp1i A V A A = Base Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A
7 eqid A A = A A
8 eqid f A A , g A A f g = f A A , g A A f g
9 eqid 𝑡 A × 𝒫 A = 𝑡 A × 𝒫 A
10 1 7 8 9 efmnd A V G = Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A
11 10 fveq2d A V Base G = Base Base ndx A A + ndx f A A , g A A f g TopSet ndx 𝑡 A × 𝒫 A
12 6 11 eqtr4d A V A A = Base G
13 base0 = Base
14 reldmmap Rel dom 𝑚
15 14 ovprc1 ¬ A V A A =
16 fvprc Could not format ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) : No typesetting found for |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) with typecode |-
17 1 16 eqtrid ¬ A V G =
18 17 fveq2d ¬ A V Base G = Base
19 13 15 18 3eqtr4a ¬ A V A A = Base G
20 12 19 pm2.61i A A = Base G
21 2 20 eqtr4i B = A A