Metamath Proof Explorer


Theorem efmndbas0

Description: The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 31-Mar-2024)

Ref Expression
Assertion efmndbas0 Base EndoFMnd =

Proof

Step Hyp Ref Expression
1 eqid EndoFMnd = EndoFMnd
2 eqid Base EndoFMnd = Base EndoFMnd
3 1 2 efmndbas Base EndoFMnd =
4 0map0sn0 =
5 3 4 eqtri Base EndoFMnd =