Metamath Proof Explorer


Theorem efmndbasabf

Description: The base set of the monoid of endofunctions on class A is the set of functions from A into itself. (Contributed by AV, 29-Mar-2024)

Ref Expression
Hypotheses efmndbas.g G = EndoFMnd A
efmndbas.b B = Base G
Assertion efmndbasabf B = f | f : A A

Proof

Step Hyp Ref Expression
1 efmndbas.g G = EndoFMnd A
2 efmndbas.b B = Base G
3 1 2 efmndbas B = A A
4 mapvalg A V A V A A = f | f : A A
5 4 anidms A V A A = f | f : A A
6 3 5 eqtrid A V B = f | f : A A
7 base0 = Base
8 7 eqcomi Base =
9 fvprc ¬ A V EndoFMnd A =
10 1 9 eqtrid ¬ A V G =
11 10 fveq2d ¬ A V Base G = Base
12 2 11 eqtrid ¬ A V B = Base
13 mapprc ¬ A V f | f : A A =
14 8 12 13 3eqtr4a ¬ A V B = f | f : A A
15 6 14 pm2.61i B = f | f : A A