Metamath Proof Explorer


Theorem efmndbasfi

Description: The monoid of endofunctions on a finite set A is finite. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndbas.b B=BaseG
Assertion efmndbasfi AFinBFin

Proof

Step Hyp Ref Expression
1 efmndbas.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndbas.b B=BaseG
3 1 2 efmndbas B=AA
4 mapfi AFinAFinAAFin
5 4 anidms AFinAAFin
6 3 5 eqeltrid AFinBFin