Metamath Proof Explorer


Theorem efmndbasfi

Description: The monoid of endofunctions on a finite set A is finite. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g G = EndoFMnd A
efmndbas.b B = Base G
Assertion efmndbasfi A Fin B Fin

Proof

Step Hyp Ref Expression
1 efmndbas.g G = EndoFMnd A
2 efmndbas.b B = Base G
3 1 2 efmndbas B = A A
4 mapfi A Fin A Fin A A Fin
5 4 anidms A Fin A A Fin
6 3 5 eqeltrid A Fin B Fin