Metamath Proof Explorer


Theorem efmndfv

Description: The function value of an endofunction. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g G = EndoFMnd A
efmndbas.b B = Base G
Assertion efmndfv F B X A F X A

Proof

Step Hyp Ref Expression
1 efmndbas.g G = EndoFMnd A
2 efmndbas.b B = Base G
3 1 2 efmndbasf F B F : A A
4 3 ffvelcdmda F B X A F X A